1,704 research outputs found
On large deviations in queuing systems
The main purpose of the article is to provide a simpler and more elementary alternative derivation of the large deviation principle for compound Poisson processes defined
An efficient ant colony system based on receding horizon control for the aircraft arrival sequencing and scheduling problem
The aircraft arrival sequencing and scheduling (ASS) problem is a salient problem in air traffic control (ATC), which proves to be nondeterministic polynomial (NP) hard. This paper formulates the ASS problem in the form of a permutation problem and proposes a new solution framework that makes the first attempt at using an ant colony system (ACS) algorithm based on the receding horizon control (RHC) to solve it. The resultant RHC-improved ACS algorithm for the ASS problem (termed the RHC-ACS-ASS algorithm) is robust, effective, and efficient, not only due to that the ACS algorithm has a strong global search ability and has been proven to be suitable for these kinds of NP-hard problems but also due to that the RHC technique can divide the problem with receding time windows to reduce the computational burden and enhance the solution's quality. The RHC-ACS-ASS algorithm is extensively tested on the cases from the literatures and the cases randomly generated. Comprehensive investigations are also made for the evaluation of the influences of ACS and RHC parameters on the performance of the algorithm. Moreover, the proposed algorithm is further enhanced by using a two-opt exchange heuristic local search. Experimental results verify that the proposed RHC-ACS-ASS algorithm generally outperforms ordinary ACS without using the RHC technique and genetic algorithms (GAs) in solving the ASS problems and offers high robustness, effectiveness, and efficienc
Obesity prevalence and time trend among youngsters in China, 1982-2002
Purpose of present study is to describe the prevalence and trend of overweight and obesity, as well as its coexistence with stunting, among youngsters in China, from 1982 to 2002. Data from children 7-17 years of age from three cross-sectional national surveys: 1982 China National Nutrition Survey (5 334 boys and 4 793 girls), 1992 China National Nutrition Survey (8 048 boys and 7 453 girls) and 2002 China National Nutrition and Health Survey (23 242 boys and 21 638 girls) were used in this study. Overweight and obesity were defined according to age, sex specific BMI cut-off points from the International Obesity Task Force, while stunting was defined as height-for-age below -2 standard deviation from the NCHS/WHO reference median value. Results: Overweight prevalence of Chinese youngsters was 1.2%, 3.7% and 4.4%, while the obesity prevalence was 0.2%, 0.9% and 0.9% in 1982, 1992 and 2002, respectively. Both the overweight and obesity prevalence and their increment were higher among boys in urban areas. In 1982, 28.4% of overweight and 69.6% of obese youngsters were stunted, this decreased to 22.0% and 46.4% in 1992, and then to 5.7% and 7.7% in 2002, respectively. Conclusion: The prevalence of overweight and obesity in Chinese youngsters were low in 1982. There has been a rapid increase since then. If this trend continues, overweight will soon reach epidemic proportions. Stunting among overweight and obese youngsters decreased dramatically at the same time
Modelling a real rockslide as a static-dynamic transition using a material instability criterion
747-757Failures at geological discontinuities often play a dominant role in the prediction of rockslides. In this study, a second order work criterion was used to analyze this type of problem by its constitutive instabilities, as it can expound all physical instabilities by divergence, except flutter instabilities. Derived from vanishing of the second order work, a matrix analysis focusing on the instability of geological discontinuities in two dimensions was performed. A real rockslide was simulated in a 2-D framework, and the second order work criterion was used to predict the occurrence of the rockslide. The numerical results were compared to monitoring data. Rockslides could be considered as processes involving a transition from a static loading to a dynamic response including a sudden burst of kinetic energy. Furthermore, a relationship existed between the second order work and second order kinetic energy. Hence, kinetic energy estimation was performed using two numerical approaches derived from this relationship and compared
Functional Diversity of Microbial Communities in Sludge-Amended Soils
AbstractThe BIOLOG method was applied to exploration of functional diversity of soil microbial communities in sludge-amended soils sampled from the Yangtze River Delta. Results indicated that metabolic profile, functional diversity indexes and Kinetic parameters of the soil microbial communities changed following soil amendment with sewage sludge, suggesting that the changes occurred in population of the microbes capable of exploiting carbon substrates and in this capability as well. The kinetic study of the functional diversity revealed that the metabolic profile of the soil microbial communities exhibited non-linear correlation with the incubation time, showing a curse of sigmoid that fits the dynamic model of growth of the soil microbial communities. In all the treatments, except for treatments of coastal fluvo-aquic soil amended with fresh sludge and dried sludge from Hangzhou, kinetic parameters K and r of the functional diversity of the soil microbial communities decreased significantly and parameter S increased. Changes in characteristics of the functional diversity well reflected differences in C utilizing capacity and model of the soil microbial communities in the sludge-amended soils, and changes in functional diversity of the soil microbial communities in a particular eco-environment, like soil amended with sewage sludge
An image reconstruction algorithm based on the semiparametric model for electrical capacitance tomography
AbstractElectrical capacitance tomography (ECT) is considered as a promising tomography technology, and exactly reconstructing the original objects is highly desirable in real applications. In this paper, a generalized image reconstruction model that simultaneously considers the inaccurate property in the measured capacitance data and the linearization approximation error is presented. A generalized objective function, which has been developed using a combinational M-estimation and an extended stabilizing item, is proposed. The objective function unifies six estimation methods into a concise formula, where different estimation methods can be easily obtained by selecting different parameters. The homotopy method that integrates the beneficial advantages of the alternant iteration scheme is employed to solve the proposed objective function. Numerical simulations are implemented to evaluate the numerical performances and effectiveness of the proposed algorithm, and the numerical results reveal that the proposed algorithm is efficient and overcomes the numerical instability in the process of ECT image reconstruction. For the reconstructed objects in this paper, a dramatic improvement in accuracy and spatial resolution can be achieved, which indicates that the proposed algorithm is a promising candidate for solving ECT inverse problems
GPU Implementation of DPSO-RE Algorithm for Parameters Identification of Surface PMSM Considering VSI Nonlinearity
In this paper, an accurate parameter estimation model of surface permanent magnet synchronous machines (SPMSMs) is established by taking into account voltage-source-inverter (VSI) nonlinearity. A fast dynamic particle swarm optimization (DPSO) algorithm combined with a receptor editing (RE) strategy is proposed to explore the optimal values of parameter estimations. This combination provides an accelerated implementation on graphics processing unit (GPU), and the proposed method is, therefore, referred to as G-DPSORE. In G-DPSO-RE, a dynamic labor division strategy is incorporated into the swarms according to the designed evolutionary factor during the evolution process. Two novel modifications of the movement equation are designed to update the velocity of particles. Moreover, a chaotic-logistic-based immune RE operator is developed to facilitate the global best individual (gBest particle) to explore a potentially better region. Furthermore, a GPU parallel acceleration technique is utilized to speed up parameter estimation procedure. It has been demonstrated that the proposed method is effective for simultaneous estimation of the PMSM parameters and the disturbance voltage (Vdead) due to VSI nonlinearity from experimental data for currents and rotor speed measured with inexpensive equipment. The influence of the VSI nonlinearity on the accuracy of parameter estimation is analyzed
Hot air drying combined vacuum-filling nitrogen drying of apple slices: Drying characteristics and nutrients
[EN] In this paper, hot air drying (HAD) was applied when moisture content of apple slices range from 50% to 86%, and then vacuum-filling nitrogen drying (VFND) was used till moisture content reaching 7%. Results showed that, the drying rate of apple slice during VFND period increased with temperature increment and decreased with increment of slice thickness; compared to freezing dried samples, samples dried in this research were owned lower Vc and higher flavonoid; when HAD (70℃,3.0m/s)+VFND(relative pressure 0.08MPa, 50℃) and thickness of 6.0mm, nutrients reached better levels: retentions of Vc, total phenolics and flavonoid were 1.63mg/100g, 4.07mg/100g and 2.10mg/100g, respectively.The work was financially supported by the Fundamental Research Funds for the Central Universities of China (NO. GK201503072 and GK201601007).Huang, X.; Li, T.; Li, S.; Wu, Z.; Xue, J. (2018). Hot air drying combined vacuum-filling nitrogen drying of apple slices: Drying characteristics and nutrients. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 811-818. https://doi.org/10.4995/IDS2018.2018.7477OCS81181
Specific surface area and neutron scattering analysis of water’s glass transition and micropore collapse in amorphous solid water
Physico-chemical instability is commonly associated with the amorphous state, and the understanding of instability mechanisms (e.g. the glass transition) involved is essential in designing pharmaceutical products. The glass transition of bulk water might occur at 210 K [Oguni et al., J. Phys. Chem. B 115 (2011) 14023] but it was recently proposed the glass transition of water could happen around 121 K [C. R. Hill et al., Phys. Rev. Lett. 116 (2016) 215501]. Note that molecular self-inclusions in a glassy water show relaxation features that are characteristically different from those observed in thermodynamically stable, crystalline solids with inclusions. Here we point out some doubtful results and calculations in Hill et al.?s work [C. R. Hill et al., Phys. Rev. Lett. 116 (2016) 215501] which was based on the small-angle neutron scattering (SANS) measurements. We also made some remarks about the possible mistakes in their previous works [C. Mitterdorfer, Phys. Chem. Chem. Phys. 16 (2014) 16013] considering the calculation of the specific surface area. The latter is crucial to the doubtful fixing of the glass transition temperature in Hill et al.?s work [C. R. Hill et al., Phys. Rev. Lett. 116 (2016) 215501]
Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial
Biofertilizer has been identified as an alternative to chemical fertilizer to increase soil fertility and crop production in
sustainable farming. The objective of this greenhouse study was to evaluate the effects of four biofertilizers containing an
arbuscular mycorrhizal fungus (Glomus mosseae or Glomus intraradices) with or without N-fixer (Azotobacter chroococcum),
P solubilizer (Bacillus megaterium) and K solubilizer (Bacillus mucilaginous) on soil properties and the growth of Zea mays.
The application treatments included control (no fertilizer), chemical fertilizer, organic fertilizer and two types of biofertilizer.
The application of biofertilizer containing mycorrhizal fungus and three species of bacteria significantly increased the growth of
Z. mays. The use of biofertilizer (G. mosseae and three bacterial species) resulted in the highest biomass and seedling height.
This greenhouse study also indicated that half the amount of biofertilizer application had similar effects when compared with
organic fertilizer or chemical fertilizer treatments. Microbial inoculum not only increased the nutritional assimilation of plant
(total N, P and K), but also improved soil properties, such as organic matter content and total N in soil. The arbuscular
mycorrhizal fungi (AMF) had a higher root infection rate in the presence of bacterial inoculation. By contrast, the AMF seemed
to have an inhibiting effect on the P-solubilizing bacteria. The nutrient deficiency in soil resulted in a larger population of Nfixing
bacteria and higher colonization of AMF
- …