122 research outputs found

    Anyon exclusions statistics on surfaces with gapped boundaries

    Full text link
    An anyon exclusion statistics, which generalizes the Bose-Einstein and Fermi-Dirac statistics of bosons and fermions, was proposed by Haldane[1]. The relevant past studies had considered only anyon systems without any physical boundary but boundaries often appear in real-life materials. When fusion of anyons is involved, certain `pseudo-species' anyons appear in the exotic statistical weights of non-Abelian anyon systems; however, the meaning and significance of pseudo-species remains an open problem. In this paper, we propose an extended anyon exclusion statistics on surfaces with gapped boundaries, introducing mutual exclusion statistics between anyons as well as the boundary components. Motivated by Refs. [2, 3], we present a formula for the statistical weight of many-anyon states obeying the proposed statistics. We develop a systematic basis construction for non-Abelian anyons on any Riemann surfaces with gapped boundaries. From the basis construction, we have a standard way to read off a canonical set of statistics parameters and hence write down the extended statistical weight of the anyon system being studied. The basis construction reveals the meaning of pseudo-species. A pseudo-species has different `excitation' modes, each corresponding to an anyon species. The `excitation' modes of pseudo-species corresponds to good quantum numbers of subsystems of a non-Abelian anyon system. This is important because often (e.g., in topological quantum computing) we may be concerned about only the entanglement between such subsystems.Comment: 36 pages, 14 figure

    Gapped Boundary Theory of the Twisted Gauge Theory Model of Three-Dimensional Topological Orders

    Full text link
    We extend the twisted gauge theory model of topological orders in three spatial dimensions to the case where the three spaces have two dimensional boundaries. We achieve this by systematically constructing the boundary Hamiltonians that are compatible with the bulk Hamoltonian. Given the bulk Hamiltonian defined by a gauge group GG and a four-cocycle ω\omega in the fourth cohomology group of GG over U(1)U(1), a boundary Hamiltonian can be defined by a subgroup KK of GG and a three-cochain α\alpha in the third cochain group of KK over U(1)U(1). The boundary Hamiltonian to be constructed must be gapped and invariant under the topological renormalization group flow (via Pachner moves), leading to a generalized Frobenius condition. Given KK, a solution to the generalized Frobenius condition specifies a gapped boundary condition. We derive a closed-form formula of the ground state degeneracy of the model on a three-cylinder, which can be naturally generalized to three-spaces with more boundaries. We also derive the explicit ground-state wavefunction of the model on a three-ball. The ground state degeneracy and ground-state wavefunction are both presented solely in terms of the input data of the model, namely, {G,ω,K,α}\{G,\omega,K,\alpha\}

    Entanglement Entropy of Topological Orders with Boundaries

    Full text link
    In this paper we explore how non trivial boundary conditions could influence the entanglement entropy in a topological order in 2+1 dimensions. Specifically we consider the special class of topological orders describable by the quantum double. We will find very interesting dependence of the entanglement entropy on the boundary conditions particularly when the system is non-Abelian. Along the way, we demonstrate a streamlined procedure to compute the entanglement entropy, which is particularly efficient when dealing with systems with boundaries. We also show how this method efficiently reproduces all the known results in the presence of anyonic excitations.Comment: 29 pages, 11 figure

    Making the Invisible Visible: Action Recognition Through Walls and Occlusions

    Full text link
    Understanding people's actions and interactions typically depends on seeing them. Automating the process of action recognition from visual data has been the topic of much research in the computer vision community. But what if it is too dark, or if the person is occluded or behind a wall? In this paper, we introduce a neural network model that can detect human actions through walls and occlusions, and in poor lighting conditions. Our model takes radio frequency (RF) signals as input, generates 3D human skeletons as an intermediate representation, and recognizes actions and interactions of multiple people over time. By translating the input to an intermediate skeleton-based representation, our model can learn from both vision-based and RF-based datasets, and allow the two tasks to help each other. We show that our model achieves comparable accuracy to vision-based action recognition systems in visible scenarios, yet continues to work accurately when people are not visible, hence addressing scenarios that are beyond the limit of today's vision-based action recognition.Comment: ICCV 2019. The first two authors contributed equally to this pape

    The Effects of Urban Polycentricity on Particulate Matter Emissions From Vehicles: Evidence From 102 Chinese Cities

    Get PDF
    This article analyzes the impact of the level of urban polycentricity (UP) on particulate matter emissions from vehicles (PMV) across 102 prefecture-level cities in China between 2011 and 2015. We adopt a spatial panel modeling approach to our measures of UP and PMV, controlling for (possible) intervening effects such as population density and economic output. We observe an inverted U-shaped relationship between both measures: When UP is low, an increase in polycentricity is associated with higher levels of PMV; however, when UP reaches a certain threshold, the increase in polycentricity is associated with a reduction in PMV. We find a similar relationship between economic output and PMV and demonstrate how the effects of population density on PMV consist of two opposite processes that likely offset each other. Nonetheless, jointly, population density and UP have a significant effect on PMV. We use our results to discuss policy implications and identify avenues for further research

    Evidence for an oncogenic role of HOXC6 in human non-small cell lung cancer

    Get PDF
    Background Identification of specific biomarkers is important for the diagnosis and treatment of non-small cell lung cancer (NSCLC). HOXC6 is a homeodomain-containing transcription factor that is highly expressed in several human cancers; however, its role in NSCLC remains unknown. Methods The expression and protein levels of HOXC6 were assessed in NSCLC tissue samples by Quantitative real-time PCR (qRT-PCR) and immunohistochemistry, respectively. HOXC6 was transfected into the NSCLC cell lines A549 and PC9, and used to investigate its effect on proliferation, migration, and invasion using CFSE, wound healing, and Matrigel invasion assays. Next-generation sequencing was also used to identify downstream targets of HOXC6 and to gain insights into the molecular mechanisms underlying its biological function. Results HOXC6 expression was significantly increased in 66.6% (20/30) of NSCLC tumor samples in comparison to normal controls. HOXC6 promoted proliferation, migration, and invasion of NSCLC cells in vitro. RNA-seq analysis demonstrated the upregulation of 310 and 112 genes in A549-HOXC6 and PC9-HOXC6 cells, respectively, and the downregulation of 665 and 385 genes in A549-HOXC6 and PC9-HOXC6 cells, respectively. HOXC6 was also found to regulate the expression of genes such as CEACAM6, SPARC, WNT6, CST1, MMP2, and KRT13, which have documented pro-tumorigenic functions. Discussion HOXC6 is highly expressed in NSCLC, and it may enhance lung cancer progression by regulating the expression of pro-tumorigenic genes involved in proliferation, migration, and invasion. Our study highlighted the oncogenic potential of HOXC6, and suggests that it may be a novel biomarker for the diagnosis and treatment of NSCLC

    Construction of a prognostic assessment model for colon cancer patients based on immune-related genes and exploration of related immune characteristics

    Get PDF
    Objectives: To establish a novel risk score model that could predict the survival and immune response of patients with colon cancer.Methods: We used The Cancer Genome Atlas (TCGA) database to get mRNA expression profile data, corresponding clinical information and somatic mutation data of patients with colon cancer. Limma R software package and univariate Cox regression were performed to screen out immune-related prognostic genes. GO (Gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) were used for gene function enrichment analysis. The risk scoring model was established by Lasso regression and multivariate Cox regression. CIBERSORT was conducted to estimate 22 types of tumor-infiltrating immune cells and immune cell functions in tumors. Correlation analysis was used to demonstrate the relationship between the risk score and immune escape potential.Results: 679 immune-related genes were selected from 7846 differentially expressed genes (DEGs). GO and KEGG analysis found that immune-related DEGs were mainly enriched in immune response, complement activation, cytokine-cytokine receptor interaction and so on. Finally, we established a 3 immune-related genes risk scoring model, which was the accurate independent predictor of overall survival (OS) in colon cancer. Correlation analysis indicated that there were significant differences in T cell exclusion potential in low-risk and high-risk groups.Conclusion: The immune-related gene risk scoring model could contribute to predicting the clinical outcome of patients with colon cancer
    corecore