243,018 research outputs found
Extracting Energy from a Black Hole through Its Disk
When some magnetic field lines connect a Kerr black hole with a disk rotating
around it, energy and angular momentum are transferred between them. If the
black hole rotates faster than the disk, for a thin Keplerian
disk, then energy and angular momentum are extracted from the black hole and
transferred to the disk ( is the mass and is the angular momentum
of the black hole). This way the energy originating in the black hole may be
radiated away by the disk.
The total amount of energy that can be extracted from the black hole spun
down from to by a thin Keplerian disk is
. This is larger than which can be
extracted by the Blandford-Znajek mechanism.Comment: 8 pages, 2 figure
A propeller scenario for the gamma-ray emission of low-mass X-ray binaries: The case of XSS J12270-4859
XSS J12270-4859 is the only low mass X-ray binary (LMXB) with a proposed
persistent gamma-ray counterpart in the Fermi-LAT domain, 2FGL 1227.7-4853.
Here, we present the results of the analysis of recent INTEGRAL observations,
aimed at assessing the long-term variability of the hard X-ray emission, and
thus the stability of the accretion state. We confirm that the source behaves
as a persistent hard X-ray emitter between 2003 and 2012. We propose that XSS
J12270-4859 hosts a neutron star in a propeller state, a state we investigate
in detail, developing a theoretical model to reproduce the associated X-ray and
gamma-ray properties. This model can be understood as being of a more general
nature, representing a viable alternative by which LMXBs can appear as
gamma-ray sources. In particular, this may apply to the case of millisecond
pulsars performing a transition from a state powered by the rotation of their
magnetic field, to a state powered by matter in-fall, such as that recently
observed from the transitional pulsar PSR J1023+0038. While the surface
magnetic field of a typical NS in a LMXB is lower by more than four orders of
magnitude than the much more intense fields of neutron stars accompanying
high-mass binaries, the radius at which the matter in-flow is truncated in a
NS-LMXB system is much lower. The magnetic field at the magnetospheric
interface is then orders of magnitude larger at this interface, and as
consequence, so is the power to accelerate electrons. We demonstrate that the
cooling of the accelerated electron population takes place mainly through
synchrotron interaction with the magnetic field permeating the interface, and
through inverse Compton losses due to the interaction between the electrons and
the synchrotron photons they emit. We found that self-synchrotron Compton
processes can explain the high energy phenomenology of XSS J12270-4859.Comment: 12 pages, 3 figures, accepted for publication in MNRAS. References
update
Sea-quark effects in the pion charge form factor
It is shown that the data on the pion charge form factor admit the
possibility for a substantial sea-quark components in the pion wave function.
If the charge form factor is calculated with instant form kinematics in a
constituent quark model that is extended to include explicit
components in the pion wave function, that component will give the dominant
contribution to the calculated charge form factor at large values of
momentum transfer. The present experimental values can be described well
with component admixtures of up to 50%. The sensitivity of the
calculated charge form factor to whether one of the quarks or one of
the antiquarks is taken to be in the P-state is small.Comment: 14 page
X(1812) in Quarkonia-Glueball-Hybrid Mixing Scheme
Recently a (X(1812)) state with a mass near the threshold of
and has been observed by the BES collaboration in decay. It has been suggested that it is a
state. If it is true, this state fits in a mixing scheme based on quarkonia,
glueball and hybrid (QGH) very nicely where five physical states are predicted.
Together with the known , , , and
states, X(1812) completes the five members in this family. Using known
experimental data on these particles we determine the ranges of the mixing
parameters and predict decay properties for X(1812). We also discuss some
features which may be able to distinguish between four-quark and hybrid mixing
schemes.Comment: 15 pages, 2 figures, 3 table
Domain Wall and Periodic Solutions of Coupled phi4 Models in an External Field
Coupled double well (phi4) one-dimensional potentials abound in both
condensed matter physics and field theory. Here we provide an exhaustive set of
exact periodic solutions of a coupled model in an external field in
terms of elliptic functions (domain wall arrays) and obtain single domain wall
solutions in specific limits. We also calculate the energy and interaction
between solitons for various solutions. Both topological and nontopological
(e.g. some pulse-like solutions in the presence of a conjugate field) domain
walls are obtained. We relate some of these solutions to the recently observed
magnetic domain walls in certain multiferroic materials and also in the field
theory context wherever possible. Discrete analogs of these coupled models,
relevant for structural transitions on a lattice, are also considered.Comment: 35 pages, no figures (J. Math. Phys. 2006
- β¦