166 research outputs found

    Evaluation of efficacy and safety of gefitinib as monotherapy in Chinese patients with advanced non-small cell lung cancer and very poor performance status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper reports the outcome of gefitinib for Chinese advanced NSCLC patients with poor performance status (PS) at the Peking Union Medical College Hospital.</p> <p>Methods</p> <p>From Oct 2002 to Apr. 2006, 42 advanced NSCLC patients with PS 3/4 received gefitinib 250 mg/day treatment. Median survival (MS) were calculated using the Kaplan-Meier method and a Cox regression model was used to find main factors affecting MS.</p> <p>Results</p> <p>Adverse events (AEs) were generally mild (grade 1 and 2) and reversible. The most frequent AEs were rash 72.2% (26/42) and diarrhea 44.4% (26/42). The objective tumor response rate and stable disease rate were 40.5% and 26.2% respectively, and median survival(MS) of all patients was 10.1 months (95% confidential interval CI, 3.4 ~ 16.8), and progression-free survival(PFS) was 5.7 months (95% CI, 4.5 ~ 6.9). The MS were significantly related with objective response of gefitinib. Objective responses was significantly related with rashes induced with gefitinib.</p> <p>Conclusion</p> <p>Our study suggest that treatment with gefitinib may be well tolerated and beneficial for Chinese patients with poor PS, and the safety and efficacy were similar to patients with good PS.</p

    FAITHSCORE: Evaluating Hallucinations in Large Vision-Language Models

    Full text link
    We introduce FAITHSCORE (Faithfulness to Atomic Image Facts Score), a reference-free and fine-grained evaluation metric that measures the faithfulness of the generated free-form answers from large vision-language models (LVLMs). The FAITHSCORE evaluation first identifies sub-sentences containing descriptive statements that need to be verified, then extracts a comprehensive list of atomic facts from these sub-sentences, and finally conducts consistency verification between fine-grained atomic facts and the input image. Meta-evaluation demonstrates that our metric highly correlates with human judgments of faithfulness. We collect two benchmark datasets (i.e. LLaVA-1k and MSCOCO-Cap) for evaluating LVLMs instruction-following hallucinations. We measure hallucinations in state-of-the-art LVLMs with FAITHSCORE on the datasets. Results reveal that current systems are prone to generate hallucinated content unfaithful to the image, which leaves room for future improvements. Further, we find that current LVLMs despite doing well on color and counting, still struggle with long answers, relations, and multiple objects

    Fine-grained Data Distribution Alignment for Post-Training Quantization

    Full text link
    While post-training quantization receives popularity mostly due to its evasion in accessing the original complete training dataset, its poor performance also stems from scarce images. To alleviate this limitation, in this paper, we leverage the synthetic data introduced by zero-shot quantization with calibration dataset and propose a fine-grained data distribution alignment (FDDA) method to boost the performance of post-training quantization. The method is based on two important properties of batch normalization statistics (BNS) we observed in deep layers of the trained network, (i.e.), inter-class separation and intra-class incohesion. To preserve this fine-grained distribution information: 1) We calculate the per-class BNS of the calibration dataset as the BNS centers of each class and propose a BNS-centralized loss to force the synthetic data distributions of different classes to be close to their own centers. 2) We add Gaussian noise into the centers to imitate the incohesion and propose a BNS-distorted loss to force the synthetic data distribution of the same class to be close to the distorted centers. By utilizing these two fine-grained losses, our method manifests the state-of-the-art performance on ImageNet, especially when both the first and last layers are quantized to the low-bit. Code is at \url{https://github.com/zysxmu/FDDA}.Comment: ECCV202

    Performance of AC-LGAD strip sensor designed for the DarkSHINE experiment

    Full text link
    AC-coupled Low Gain Avalanche Detector (AC-LGAD) is a new precise detector technology developed in recent years. Based on the standard Low Gain Avalanche Detector (LGAD) technology, AC-LGAD sensors can provide excellent timing performance and spatial resolution. This paper presents the design and performance of several prototype AC-LGAD strip sensors for the DarkSHINE tracking system, as well as the electrical characteristics and spatial resolution of the prototype sensors from two batches of wafers with different n+n^+ dose.The range of spatial resolutions of 6.5μm\mathrm{\mu m} ∼\sim 8.2μm\mathrm{\mu m} and 8.8μm\mathrm{\mu m} ∼\sim 12.3μm\mathrm{\mu m} are achieved by the AC-LGAD sensors with 100μm\mu m pitch size.Comment: 10 pages, 12 figure

    OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models

    Full text link
    Large language models (LLMs) have revolutionized natural language processing tasks. However, their practical deployment is hindered by their immense memory and computation requirements. Although recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM, they hand-craft quantization parameters, which leads to low performance and fails to deal with extremely low-bit quantization. To tackle this issue, we introduce an Omnidirectionally calibrated Quantization (OmniQuant) technique for LLMs, which achieves good performance in diverse quantization settings while maintaining the computational efficiency of PTQ by efficiently optimizing various quantization parameters. OmniQuant comprises two innovative components including Learnable Weight Clipping (LWC) and Learnable Equivalent Transformation (LET). LWC modulates the extreme values of weights by optimizing the clipping threshold. Meanwhile, LET tackles activation outliers by shifting the challenge of quantization from activations to weights through a learnable equivalent transformation. Operating within a differentiable framework using block-wise error minimization, OmniQuant can optimize the quantization process efficiently for both weight-only and weight-activation quantization. For instance, the LLaMA-2 model family with the size of 7-70B can be processed with OmniQuant on a single A100-40G GPU within 1-16 hours using 128 samples. Extensive experiments validate OmniQuant's superior performance across diverse quantization configurations such as W4A4, W6A6, W4A16, W3A16, and W2A16. Additionally, OmniQuant demonstrates effectiveness in instruction-tuned models and delivers notable improvements in inference speed and memory reduction on real devices. Codes and models are available at \url{https://github.com/OpenGVLab/OmniQuant}.Comment: Updated result with 2-bit quantization. A differentiable quantization method for LL

    The performance of large-pitch AC-LGAD with different N+ dose

    Full text link
    AC-Coupled LGAD (AC-LGAD) is a new 4D detector developed based on the Low Gain Avalanche Diode (LGAD) technology, which can accurately measure the time and spatial information of particles. Institute of High Energy Physics (IHEP) designed a large-size AC-LGAD with a pitch of 2000 {\mu}m and AC pad of 1000 {\mu}m, and explored the effect of N+ layer dose on the spatial resolution and time resolution. The spatial resolution varied from 32.7 {\mu}m to 15.1 {\mu}m depending on N+ dose. The time resolution does not change significantly at different N+ doses, which is about 15-17 ps. AC-LGAD with a low N+ dose has a large attenuation factor and better spatial resolution. Large signal attenuation factor and low noise level are beneficial to improve the spatial resolution of the AC-LGAD sensor

    The role of smoking and alcohol in mediating the effect of gastroesophageal reflux disease on lung cancer: A Mendelian randomization study

    Get PDF
    Observational studies have suggested a positive association between gastroesophageal reflux disease and lung cancer, but due to the existence of confounders, it remains undetermined whether gastroesophageal reflux disease (GERD) has a causal association with lung cancer. Therefore, Mendelian randomization (MR) analyses were applied to investigate the relationship between the two conditions. Two-sample Mendelian randomization analysis was utilized with summary genetic data from the European Bioinformatics Institute (602,604 individuals) and International Lung Cancer Consortium, which provides information on lung cancer and its histological subgroups. Furthermore, we used two-step Mendelian randomization and multivariable Mendelian randomization to estimate whether smoking initiation (311,629 cases and 321,173 controls) and alcohol intake frequency (n = 462,346) mediate any effect of gastroesophageal reflux disease on lung cancer risk. The Mendelian randomization analyses indicated that gastroesophageal reflux disease was associated with and significantly increased the risk of lung cancer (ORIVW = 1.35, 95% CI = 1.18–1.54; p = 1.36 × 10–5). Smoking initiation and alcohol intake frequency mediated 35% and 3% of the total effect of gastroesophageal reflux disease on lung cancer, respectively. The combined effect of these two factors accounted for 60% of the total effect. In conclusion, gastroesophageal reflux disease is associated with an increased risk of lung cancer, and interventions to reduce smoking and alcohol intake may reduce the incidence of lung cancer

    Characterization of the response of IHEP-IME LGAD with shallow carbon to Gamma Irradiation

    Full text link
    Low Gain Avalanche Detectors (LGAD), as part of High-Granularity Timing Detector (HGTD), is crucial to reducing pileup in the upgrading to HL-LHC. Many studies have been done on the bulk damages of the LGAD. However, there's no study about the surface radiation hardness of the LGAD sensors with carbon implanted. The IHEP-IME LGAD version 3 with the shallow carbon and different interpad separations were irradiated up to 2 MGy by gamma irradiation. The performance of the IHEP-IME LGAD version 3 before and after irradiation had been tested, such as the leakage current, break-down voltage, capacitance, Vgl_{gl}, and inter-pad resistance. The results showed that apart from minor fluctuations in some samples, no significant changes concerning inter-pad separation were observed before and after irradiation. Leakage current and break-down voltage increase after irradiation, which is considered due to surface passivation; the overall inter-pad resistance are larger than $10^9\ \Omegabeforeandafterirradiation;capacitanceisfoundtobelessthan4.5pFwithaslightdropinV before and after irradiation; capacitance is found to be less than 4.5 pF with a slight drop in V_{gl}$ after irradiation. All parameters meet the requirements of HGTD, and the results indicated that IHEP-IME LGAD v3 has excellent anti-irradiation performance

    Characterisation of Spatial and Timing Resolution of IHEP AC-LGAD Strip

    Full text link
    AC-coupled LGAD(AC-LGAD) Strip is a new design of LGAD that allows high-precision detection of particle spatiotemporal information whereas reducing the density of readout electronics. For AC-LGAD Strips, there is limited research on the impact of different strip pitches on the spatiotemporal detection performance at the small amount of injected charge. The Institute of High Energy Physics has designed an AC-LGAD Strip prototype with pitches of 150 μm\mu m, 200 μm\mu m, and 250 μm\mu m. The spatial and timing resolutions of the prototype are studied through the laser Transient Current Technique (TCT) scan with different amounts of injected charge. The results show that both the spatial and timing resolution improves as the strip pitch decreases. Increases in both temporal and spatial resolutions as the amount of charge injected increases are observed. The spatial and timing resolution is better than 60 ps and 40 μm\mu m at 1 Minimum Ionizing Particle (MIP), and better than 10 ps and 5 μm\mu m at 40 MIPs. Increasing Signal-to-Noise Ratio (SNR) is the key to improving spatial and temporal resolution, whereas increasing the signal attenuation rate by reducing the gap between adjacent electrodes also helps to improve spatial resolution. The enhancements of spatial and timing resolutions by both SNR and signal attenuation rate decrease with increasing amount of MIP. This study can help design and optimize the AC-LGAD Strip detectors and readout electronics
    • …
    corecore