7 research outputs found

    Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription

    Get PDF
    The metal ions, Cu 2+/+ and Fe 3+/2+ , are essential co-factors for a wide variety of enzymatic reactions. However, both metal ions are toxic when hyper-accumulated or maldistributed within cells due to their ability to generate damaging free radicals or through the displacement of other physiological metal ions from metalloproteins. Although copper transport into yeast cells is apparently independent of iron, the known dependence on Cu 2+ for high affinity transport of Fe 2+ into yeast cells has established a physiological link between these two trace metal ions. In this study we demonstrate that proteins encoded by genes previously demonstrated to play critical roles in vacuole assembly or acidification, PEP3 , PEP5 and VMA3 , are also required for normal copper and iron metal ion homeostasis. Yeast cells lacking a functional PEP3 or PEP5 gene are hypersensitive to copper and render the normally iron-repressible FET3 gene, encoding a multi-copper Fe(II) oxidase involved in Fe 2+ transport, also repressible by exogenous copper ions. The inability of these same vacuolar mutant strains to repress FET3 mRNA levels in the presence of an iron-unresponsive allele of the AFT1 regulatory gene are consistent with alterations in the intracellular distribution or redox states of Fe 3+/2+ in the presence of elevated extracellular concentrations of copper ions. Therefore, the yeast vacuole is an important organelle for maintaining the homeostatic convergence of the essential yet toxic copper and iron ions. © 1997 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38514/1/190_ftp.pd

    Reducing haziness in white wine by overexpression of Saccharomyces cerevisiae genes YOL155c and YDR055w

    No full text
    © Springer The original publication can be found at www.springerlink.comGrape proteins aggregate in white wine to form haze. A novel method to prevent haze in wine is the use of haze protective factors (Hpfs), specific mannoproteins from Saccharomyces cerevisiae, which reduce the particle size of the aggregated proteins. Hpf1p was isolated from white wine and Hpf2p from a synthetic grape juice fermentation. Putative structural genes, YOL155c and YDR055w, for these proteins were identified from partial amino acid sequences of Hpf1p and Hpf2p, respectively. YOL155c also has a homologue, YIL169c, in S. cerevisiae. Comparison of the partial amino acid sequence of deglycosylated-Hpf2p with the deduced protein sequence of YDR055w, confirmed five of the 15 potential N-linked glycosylation sites in this sequence were occupied. Methylation analysis of the carbohydrate moieties of Hpf2p indicated that this protein contained both N- and O-linked mannose chains. Material from fermentation supernatant of deletion strains had significantly less activity than the wild type. Moreover, YOL155c and YIL169c overexpressing strains and a strain overexpressing 6xHis-tagged Hpf2p produced greater haze protective activity than the wild type strains. A storage trial demonstrated the short to midterm stability of 6xHis-tagged Hpf2p in wine.Shauna L. Brown, Vanessa J. Stockdale, Filomena Pettolino, Kenneth F. Pocock, Miguel de Barros Lopes, Patrick J. Williams, Antony Bacic, Geoffrey B. Fincher, Peter B. Høj and Elizabeth J. Water
    corecore