24 research outputs found

    Retardation of arsenic transport through a Pleistocene aquifer

    Get PDF
    Groundwater drawn daily from shallow alluvial sands by millions of wells over large areas of south and southeast Asia exposes an estimated population of over a hundred million people to toxic levels of arsenic1. Holocene aquifers are the source of widespread arsenic poisoning across the region2, 3. In contrast, Pleistocene sands deposited in this region more than 12,000 years ago mostly do not host groundwater with high levels of arsenic. Pleistocene aquifers are increasingly used as a safe source of drinking water4 and it is therefore important to understand under what conditions low levels of arsenic can be maintained. Here we reconstruct the initial phase of contamination of a Pleistocene aquifer near Hanoi, Vietnam. We demonstrate that changes in groundwater flow conditions and the redox state of the aquifer sands induced by groundwater pumping caused the lateral intrusion of arsenic contamination more than 120 metres from a Holocene aquifer into a previously uncontaminated Pleistocene aquifer. We also find that arsenic adsorbs onto the aquifer sands and that there is a 16–20-fold retardation in the extent of the contamination relative to the reconstructed lateral movement of groundwater over the same period. Our findings suggest that arsenic contamination of Pleistocene aquifers in south and southeast Asia as a consequence of increasing levels of groundwater pumping may have been delayed by the retardation of arsenic transport.National Science Foundation (U.S.) (NSF grant EAR09-11557)Swiss Agency for Development and Cooperation (Grant NAFOSTED 105-09-59-09 to CETASD, the Centre for Environmental Technology and Sustainable Development (Vietnam))National Institute of Environmental Health Sciences (NIEHS grant P42 ES010349)National Institute of Environmental Health Sciences (NIEHS grant P42 ES016454

    Terrestrial selenium distribution in China is potentially linked to monsoonal climate

    No full text
    The prevalence of terrestrial environments low in the essential trace element selenium (Se) results in large-scale Se deficiency worldwide. However, the underlying processes leading to Se-depleted environments have remained elusive. Here we show that over the last 6.8 million years (Ma) climatic factors have played a key role in the Se distribution in loess-paleosol sequences in the Chinese Loess Plateau (CLP), which lies in a severely Se-depleted region with a history of Se deficiency-related diseases. We use a combination of geochemical and paleoclimate data to demonstrate that during interglacial periods between 2.30 and 0.16 Ma, variations in the Se concentration in the CLP are potentially related to variability in Se input via East Asian monsoon-derived precipitation. Our results identify precipitation as an important controlling factor of Se distribution in monsoonal China. We suggest that atmospheric Se inputs via precipitation could also play an important role in other regions worldwide.</p
    corecore