22 research outputs found

    Identification and structural analysis of C-terminally truncated collapsin response mediator protein-2 in a murine model of prion diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prion diseases are fatal neurodegenerative disorders that accompany an accumulation of the disease-associated form(s) of prion protein (PrP<sup>Sc</sup>) in the central nervous system. The neuropathological changes in the brain begin with focal deposits of PrP<sup>Sc</sup>, followed by pathomorphological abnormalities of axon terminal degeneration, synaptic loss, atrophy of dendritic trees, and eventual neuronal cell death in the lesions. However, the underlying molecular basis for these neuropathogenic abnormalities is not fully understood.</p> <p>Results</p> <p>In a proteomic analysis of soluble proteins in the brains of mice challenged intracerebrally with scrapie prion (Obihiro I strain), we found that the amount of the full-length form of collapsin response mediator protein-2 (CRMP-2; 61 kDa) decreased in the late stages of the disease, while the amount of its truncated form (56 kDa) increased to comparable levels observed for the full-length form. Detailed analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry showed that the 56-kDa form (named CRMP-2-ΔC) lacked the sequence from serine<sup>518 </sup>to the C-terminus, including the C-terminal phosphorylation sites important for the regulation of axonal growth and axon-dendrite specification in developing neurons. The invariable size of the mRNA transcript in Northern blot analysis suggested that the truncation was due to post-translational proteolysis. By overexpression of CRMP-2-ΔC in primary cultured neurons, we observed the augmentation of the development of neurite branch tips to the same levels as for CRMP-2<sup>T514A/T555A</sup>, a non-phosphorylated mimic of the full-length protein. This suggests that the increased level of CRMP-2-ΔC in the brain modulates the integrity of neurons, and may be involved in the pathogenesis of the neuronal abnormalities observed in the late stages of the disease.</p> <p>Conclusions</p> <p>We identified the presence of CRMP-2-ΔC in the brain of a murine model of prion disease. Of note, C-terminal truncations of CRMP-2 have been recently observed in models for neurodegenerative disorders such as ischemia, traumatic brain injury, and Wallerian degeneration. While the structural identity of CRMP-2-ΔC in those models remains unknown, the present study should provide clues to the molecular pathology of degenerating neurons in prion diseases in connection with other neurodegenerative disorders.</p

    Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography

    Get PDF
    The integrity of the bacterial cell wall depends on the balanced action of several peptidoglycan (murein) synthesizing and degrading enzymes. Penicillin inhibits the enzymes responsible for peptide crosslinks in the peptidoglycan polymer. Enzymes that act solely on the glycosidic bonds are insensitive to this antibiotic, thus offering a target for the design of antibiotics distinct from the ÎČ-lactams. Here we report the X-ray structure of the periplasmic soluble lytic transglycosylase (SLT; Mr 70,000) from Escherichia coli. This unique bacterial exomuramidase cleaves the ÎČ-1,4-glycosidic bonds of peptidoglycan to produce small 1,6-anhydromuropeptides.The structure of SLT reveals a 'superhelical' ring of α-helices with a separate domain on top which resembles the fold of lysozyme. Site-directed mutagenesis and a crystallographic inhibitor-binding study confirmed that the lysozyme-like domain contains the active site of SLT.

    Y-family DNA polymerases respond to DNA damage-independent inhibition of replication fork progression

    No full text
    In Escherichia coli, the Y-family DNA polymerases Pol IV (DinB) and Pol V (UmuD(2)â€ČC) enhance cell survival upon DNA damage by bypassing replication-blocking DNA lesions. We report a unique function for these polymerases when DNA replication fork progression is arrested not by exogenous DNA damage, but with hydroxyurea (HU), thereby inhibiting ribonucleotide reductase, and bringing about damage-independent DNA replication stalling. Remarkably, the umuC122∷Tn5 allele of umuC, dinB, and certain forms of umuD gene products endow E. coli with the ability to withstand HU treatment (HU(R)). The catalytic activities of the UmuC122 and DinB proteins are both required for HU(R). Moreover, the lethality brought about by such stalled replication forks in the wild-type derivatives appears to proceed through the toxin/antitoxin pairs mazEF and relBE. This novel function reveals a role for Y-family polymerases in enhancing cell survival under conditions of nucleotide starvation, in addition to their established functions in response to DNA damage
    corecore