23 research outputs found

    High exposures to bioactivated cyclophosphamide are related to the occurrence of veno-occlusive disease of the liver following high-dose chemotherapy

    Get PDF
    We investigated whether the occurrence of veno-occlusive disease of the liver (VOD) may be associated with individual variations in the pharmacokinetics of high-dose cyclophosphamide. Patients received single or multiple courses of cyclophosphamide (1000 or 1500 mg m−2 day−1), thiotepa (80 or 120 mg m−2 day−1) and carboplatin (265–400 mg m−2 day−1) (CTC) for 4 consecutive days. The area under the plasma concentration–time curves (AUCs) were calculated for cyclophosphamide and its activated metabolites 4-hydroxycyclophosphamide and phosphoramide mustard based on multiple blood samples. Possible relationships between the AUCs and the occurrence of VOD were studied. A total of 59 patients (115 courses) were included. Four patients experienced VOD after a second CTC course. The first-course AUC of 4-hydroxycyclophosphamide (P=0.003) but not of phosphoramide mustard (P=0.101) appeared to be predictive of the occurrence of VOD after multiple courses. High exposures to bioactivated cyclophosphamide may lead to increased organ toxicity

    Deep Brain Stimulation Reveals a Dissociation of Consummatory and Motivated Behaviour in the Medial and Lateral Nucleus Accumbens Shell of the Rat

    Get PDF
    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa

    Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours

    Get PDF
    BACKGROUND: Hypoxia, which is commonly observed in areas of primary tumours and of metastases, influences response to treatment. However, its characterisation has so far mainly been restricted to the ex vivo analysis of tumour sections using monoclonal antibodies specific to carbonic anhydrase IX (CA IX) or by pimonidazole staining, after the intravenous administration of this 2-nitroimidazole compound in experimental animal models.METHODS: In this study, we describe the generation of high-affinity human monoclonal antibodies (A3 and CC7) specific to human CA IX, using phage technology.RESULTS: These antibodies were able to stain CA IX ex vivo and to target the cognate antigen in vivo. In one of the two animal models of colorectal cancer studied (LS174T), CA IX imaging closely matched pimonidazole staining, with a preferential staining of tumour areas characterised by little vascularity and low perfusion. In contrast, in a second animal model (SW1222), distinct staining patterns were observed for pimonidazole and CA IX targeting. We observed a complementary pattern of tumour regions targeted in vivo by the clinical-stage vascular-targeting antibody L19 and the anti-CA IX antibody A3, indicating that a homogenous pattern of in vivo tumour targeting could be achieved by a combination of the two antibodies.CONCLUSION: The new human anti-CA IX antibodies are expected to be non-immunogenic in patients with cancer and may serve as broadly applicable reagents for the non-invasive imaging of hypoxia and for pharmacodelivery applications. British Journal of Cancer (2009) 101, 645-657. doi: 10.1038/sj.bjc.6605200 www.bjcancer.com Published online 21 July 2009 (C) 2009 Cancer Research U

    Calcium dynamics are altered in cortical neurons lacking the calmodulin-binding protein RC3

    No full text
    RC3 is a neuronal calmodulin-binding protein and protein kinase C substrate that is thought to play an important regulatory role in synaptic transmission and neuronal plasticity. Two molecules known to regulate synaptic transmission and neuronal plasticity are Ca2+ and calmodulin, and proposed mechanisms of RC3 action involve both molecules. However, physiological evidence for a role of RC3 in neuronal Ca2+ dynamics is limited. In the current study we utilized cultured cortical neurons obtained from RC3 knockout (RC3-/-) and wildtype mice (RC3+/+) and fura-2-based microscopic Ca2+ imaging to investigate a role for RC3 in neuronal Ca2+ dynamics. Immunocytochemical characterization showed that the RC3-/- cultures lack RC3 immunoreactivity, whereas cultures prepared from wildtype mice showed RC3 immunoreactivity at all ages studied. RC3+/+ and RC3-/- cultures were indistinguishable with respect to neuron density, neuronal morphology, the formation of extensive neuritic networks and the presence of glial fibrillary acidic protein (GFAP)-positive astrocytes and gamma-aminobutyric acid (GABA)ergic neurons. However, the absence of RC3 in the RC3-/- neurons was found to alter neuronal Ca2+ dynamics including baseline Ca2+ levels measured under normal physiological conditions or after blockade of synaptic transmission, spontaneous intracellular Ca2+ oscillations generated by network synaptic activity, and Ca2+ responses elicited by exogenous application of N-methyl-d-aspartate (NMDA) or class I metabotropic glutamate receptor agonists. Thus, significant changes in Ca2+ dynamics occur in cortical neurons when RC3 is absent and these changes do not involve changes in gross neuronal morphology or neuronal maturation. These data provide direct physiological evidence for a regulatory role of RC3 in neuronal Ca2+ dynamics
    corecore