14 research outputs found
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol
Stochastic backgrounds of relic gravitons: a theoretical appraisal
Stochastic backgrounds or relic gravitons, if ever detected, will constitute
a prima facie evidence of physical processes taking place during the earliest
stages of the evolution of the plasma. The essentials of the stochastic
backgrounds of relic gravitons are hereby introduced and reviewed. The pivotal
observables customarily employed to infer the properties of the relic gravitons
are discussed both in the framework of the CDM paradigm as well as in
neighboring contexts. The complementarity between experiments measuring the
polarization of the Cosmic Microwave Background (such as, for instance, WMAP,
Capmap, Quad, Cbi, just to mention a few) and wide band interferometers (e.g.
Virgo, Ligo, Geo, Tama) is emphasized. While the analysis of the microwave sky
strongly constrains the low-frequency tail of the relic graviton spectrum,
wide-band detectors are sensitive to much higher frequencies where the spectral
energy density depends chiefly upon the (poorly known) rate of
post-inflationary expansion.Comment: 94 pages, 32 figure
Identification of gene biomarkers for respiratory syncytial virus infection in a bronchial epithelial cell line
Respiratory syncytial virus (RSV) infection involves complex virus-host interplay. In this study, we analyzed gene expression in RSV-infected BEAS-2B cells to discover novel signaling pathways and biomarkers. We hybridized RNAs from RSV- or vehicle-treated BEAS-2B to Affymetrix HU133 plus 2.0 microarrays (n = 4). At 4 and 24 h post-infection, 277 and 900 genes (RSV/control ratio ≥2.0 or ≤0.5), and 1 and 12 pathways respectively were significantly altered. Twenty-three and 92 genes at 4 and 24 h respectively matched respiratory disease biomarkers with ARG2 flagged at 24 h and SCNN1G, EPB41L4B, CSF1, PTEN, TUBB1 and ESR2 at both time points. Hierachical clustering showed a cluster containing ARG2 and IL8. In human bronchial epithelial cells, RSV upregulated arginase II protein. Knockdown of ARG2 increased RSV-induced IL-8, LDH and histone release. With microarray, we identified novel proximal airway epithelial cell genes that may be tested in the sputum samples as biomarkers of RSV infection