561 research outputs found

    Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites

    Get PDF
    Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS) by a virulent clone (AJ) in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs), background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter μ, the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, μ was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but future refinement of the model, challenged with other datasets, may lead to its discovery

    Prevalence and Determinants of Obesity among Primary School Children in Dar es Salaam, Tanzania.

    Get PDF
    Childhood obesity has increased dramatically and has become a public health concern worldwide. Childhood obesity is likely to persist through adulthood and may lead to early onset of NCDs. However, there is paucity of data on obesity among primary school children in Tanzania. This study assessed the prevalence and determinants of obesity among primary school children in Dar es Salaam. A cross sectional study was conducted among school age children in randomly selected schools in Dar es Salaam. Anthropometric and blood pressure measurements were taken using standard procedures. Body Mass Index (BMI) was calculated as weight in kilograms divided by the square of height in meters (kg/m2). Child obesity was defined as BMI at or above 95th percentile for age and sex. Socio-demographic characteristics of children were determined using a structured questionnaire. Logistic regression was used to determine association between independent variables with obesity among primary school children in Dar es Salaam. A total of 446 children were included in the analysis. The mean age of the participants was 11.1±2.0 years and 53.1% were girls. The mean BMI, SBP and DBP were 16.6±4.0 kg/m2, 103.9±10.3mmHg and 65.6±8.2mmHg respectively. The overall prevalence of child obesity was 5.2% and was higher among girls (6.3%) compared to boys (3.8%). Obese children had significantly higher mean values for age (p=0.042), systolic and diastolic blood pressures (all p<0.001). Most obese children were from households with fewer children (p=0.019) and residing in urban areas (p=0.002). Controlling for other variables, age above 10 years (AOR=3.3, 95% CI=1.5-7.2), female sex (AOR=2.6, 95% CI=1.4-4.9), urban residence (AOR=2.5, 95% CI=1.2-5.3) and having money to spend at school (AOR=2.6, 95% CI=1.4-4.8) were significantly associated with child obesity. The prevalence of childhood obesity in this population was found to be low. However, children from urban schools and girls were proportionately more obese compared to their counterparts. Primary preventive measures for childhood obesity should start early in childhood and address socioeconomic factors of parents contributing to childhood obesity

    Sense of place in the changing process of house form: Case studies from Ankara, Turkey

    Get PDF
    This paper aims to investigate the impact of typomorphological changes of residential environments on residents’ sense of place’. Seven housing developments representing different types introduced in Ankara, Turkey since the late 19th-century are selected as case studies. Their morphological characters at the building, street and neighbourhood scales are examined, and typological transformations among the cases in terms of the degrees of continuity are identified. The paper proposes a conceptual model consisting of ten indicators to assess sense of place at the building, street and neighbourhood scales of the residents of the seven cases. The scores of sense of place are generated through structured interviews with the residents and analysed in SPSS. The results show that sense of place is negatively affected by typomorphological changes over time, particularly when mutational changes occur. Continuity in typomorphological transformation helps to maintain sense of place at a desirable level. Furthermore, physical changes at the street and neighbourhood scales have larger impact on sense of place than that at the building scale. The research thus suggests that planning and design should be responsive to traditional types in residential development, particularly at the street and neighbourhood scales to maintain residents’ sense of place

    Intestinal Microbiota Shifts towards Elevated Commensal Escherichia coli Loads Abrogate Colonization Resistance against Campylobacter jejuni in Mice

    Get PDF
    Background: The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. Methodology/Principal Findings: Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. Conclusion/Significance: Murine colonization resistance against C. jejuni is abrogated by changes in the microbiot

    Sounds, Behaviour, and Auditory Receptors of the Armoured Ground Cricket, Acanthoplus longipes

    Get PDF
    The auditory sensory system of the taxon Hetrodinae has not been studied previously. Males of the African armoured ground cricket, Acanthoplus longipes (Orthoptera: Tettigoniidae: Hetrodinae) produce a calling song that lasts for minutes and consists of verses with two pulses. About three impulses are in the first pulse and about five impulses are in the second pulse. In contrast, the disturbance stridulation consists of verses with about 14 impulses that are not separated in pulses. Furthermore, the inter-impulse intervals of both types of sounds are different, whereas verses have similar durations. This indicates that the neuronal networks for sound generation are not identical. The frequency spectrum peaks at about 15 kHz in both types of sounds, whereas the hearing threshold has the greatest sensitivity between 4 and 10 kHz. The auditory afferents project into the prothoracic ganglion. The foreleg contains about 27 sensory neurons in the crista acustica; the midleg has 18 sensory neurons, and the hindleg has 14. The auditory system is similar to those of other Tettigoniidae

    Relative validity of a semiquantitative food frequency questionnaire designed for schoolchildren in western Greece

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of food frequency questionnaires (FFQs) has become increasingly important in epidemiologic studies. During the past few decades, a wide variety of nutritional studies have used the semiquantitative FFQ as a tool for assessing and evaluating dietary intake. One of the main concerns in a dietary analysis is the validity of the collected dietary data.</p> <p>Methods</p> <p>This paper discusses several methodological and statistical issues related to the validation of a semiquantitative FFQ. This questionnaire was used to assess the nutritional habits of schoolchildren in western Greece. For validation purposes, we selected 200 schoolchildren and contacted their respective parents. We evaluated the relative validity of 400 FFQs (200 children's FFQs and 200 parents' FFQs).</p> <p>Results</p> <p>The correlations between the children's and the parents' questionnaire responses showed that the questionnaire we designed was appropriate for fulfilling the purposes of our study and in ranking subjects according to food group intake.</p> <p>Conclusion</p> <p>Our study shows that the semiquantitative FFQ provides a reasonably reliable measure of dietary intake and corroborates the relative validity of our questionnaire.</p

    Subcellular Location, Phosphorylation and Assembly into the Motor Complex of GAP45 during Plasmodium falciparum Schizont Development

    Get PDF
    An actomyosin motor complex assembled below the parasite's plasma membrane drives erythrocyte invasion by Plasmodium falciparum merozoites. The complex is comprised of several proteins including myosin (MyoA), myosin tail domain interacting protein (MTIP) and glideosome associated proteins (GAP) 45 and 50, and is anchored on the inner membrane complex (IMC), which underlies the plasmalemma. A ternary complex of MyoA, MTIP and GAP45 is formed that then associates with GAP50. We show that full length GAP45 labelled internally with GFP is assembled into the motor complex and transported to the developing IMC in early schizogony, where it accumulates during intracellular development until merozoite release. We show that GAP45 is phosphorylated by calcium dependent protein kinase 1 (CDPK1), and identify the modified serine residues. Replacing these serine residues with alanine or aspartate has no apparent effect on GAP45 assembly into the motor protein complex or its subcellular location in the parasite. The early assembly of the motor complex suggests that it has functions in addition to its role in erythrocyte invasion

    Dynamic Range Compression in the Honey Bee Auditory System toward Waggle Dance Sounds

    Get PDF
    Honey bee foragers use a “waggle dance” to inform nestmates about direction and distance to locations of attractive food. The sound and air flows generated by dancer's wing and abdominal vibrations have been implicated as important cues, but the decoding mechanisms for these dance messages are poorly understood. To understand the neural mechanisms of honey bee dance communication, we analyzed the anatomy of antenna and Johnston's organ (JO) in the pedicel of the antenna, as well as the mechanical and neural response characteristics of antenna and JO to acoustic stimuli, respectively. The honey bee JO consists of about 300–320 scolopidia connected with about 48 cuticular “knobs” around the circumference of the pedicel. Each scolopidium contains bipolar sensory neurons with both type I and II cilia. The mechanical sensitivities of the antennal flagellum are specifically high in response to low but not high intensity stimuli of 265–350 Hz frequencies. The structural characteristics of antenna but not JO neurons seem to be responsible for the non-linear responses of the flagellum in contrast to mosquito and fruit fly. The honey bee flagellum is a sensitive movement detector responding to 20 nm tip displacement, which is comparable to female mosquito. Furthermore, the JO neurons have the ability to preserve both frequency and temporal information of acoustic stimuli including the “waggle dance” sound. Intriguingly, the response of JO neurons was found to be age-dependent, demonstrating that the dance communication is only possible between aged foragers. These results suggest that the matured honey bee antennae and JO neurons are best tuned to detect 250–300 Hz sound generated during “waggle dance” from the distance in a dark hive, and that sufficient responses of the JO neurons are obtained by reducing the mechanical sensitivity of the flagellum in a near-field of dancer. This nonlinear effect brings about dynamic range compression in the honey bee auditory system

    Identification and Characterization of an Unusual Class I Myosin Involved in Vesicle Traffic in Trypanosoma brucei

    Get PDF
    Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1) that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei. This myosin localizes to the polarized endocytic pathway in bloodstream forms of the parasite. This organization is actin dependent. Knock down of TbMyo1 results in a significant reduction in endocytic activity, a cessation in cell division and eventually cell death. A striking morphological feature in these cells is an enlargement of the flagellar pocket, which is consistent with an imbalance in traffic to and from the surface. In contrast TbMyo1 is distributed throughout procyclic forms of the tsetse vector and a loss of ∼90% of the protein has no obvious effects on growth or morphology. These results reveal a life cycle stage specific requirement for this myosin in essential endocytic traffic and represent the first description of the involvement of a motor protein in vesicle traffic in these parasites
    corecore