230 research outputs found

    Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow

    Get PDF
    Malaria is one of the most widespread and deadly human parasitic diseases caused by the Plasmodium (P.) species with the P.falciparum being the most deadly. The parasites are capable of invading red blood cells (RBCs) during infection. At the late stage of parasites’ development, the parasites export proteins to the infected RBCs (iRBC) membrane and bind to receptors of surface proteins on the endothelial cells that line microvasculature walls. Resulting adhesion of iRBCs to microvasculature is one of the main sources of most complications during malaria infection. Therefore, it is important to develop a versatile and simple experimental method to quantitatively investigate iRBCs cytoadhesion and binding kinetics. Here, we developed an advanced flow based adhesion assay to demonstrate that iRBC’s adhesion to endothelial CD36 receptor protein coated channels is a bistable process possessing a hysteresis loop. This finding confirms a recently developed model of cell adhesion which we used to fit our experimental data. We measured the contact area of iRBC under shear flow at different stages of infection using Total Internal Reflection Fluorescence (TIRF), and also adhesion receptor and ligand binding kinetics using Atomic Force Microscopy (AFM). With these parameters, we reproduced in our model the experimentally observed changes in adhesion properties of iRBCs accompanying parasite maturation and investigated the main mechanisms responsible for these changes, which are the contact area during the shear flow as well as the rupture area size.Global Enterprise for Micro-Mechanics and Molecular MedicineUnited States. Dept. of Defense (DOD-ARO (W 911 NF-09-0480))Singapore–MIT Alliance for Research and Technology ((SMART) Fellowship)National Science Foundation (U.S.) (NSF Grant No.1112825

    Solution conformation and flexibility of capsular polysaccharides from Neisseria meningitidis and glycoconjugates with the tetanus toxoid protein

    Get PDF
    The structural integrity of meningococcal native, micro-fluidized and activated capsular polysaccharides and their glycoconjugates – in the form most relevant to their potential use as vaccines (dilute solution) - have been investigated with respect to their homogeneity, conformation and flexibility. Sedimentation velocity analysis showed that the polysaccharide size distributions were generally bimodal with some evidence for higher molar mass forms at higher concentration. Weight average molar masses Mw where lower for activated polysaccharides. Conjugation with tetanus toxoid protein however greatly increased the molar mass and polydispersity of the final conjugates. Glycoconjugates had an approximately unimodal log-normal but broad and large molar mass profiles, confirmed by sedimentation equilibrium “SEDFIT MSTAR” analysis. Conformation analysis using HYDFIT (which globally combines sedimentation and viscosity data), “Conformation Zoning” and Wales-van Holde approaches showed a high degree of flexibility – at least as great as the unconjugated polysaccharides, and very different from the tetanus toxoid (TT) protein used for the conjugation. As with the recently published finding for Hib-TT complexes, it is the carbohydrate component that dictates the solution behaviour of these glycoconjugates, although the lower intrinsic viscosities suggest some degree of compaction of the carbohydrate chains around the protein

    Equity Ownership Strategy in Greenfield Investments : Influences of Host Country Infrastructure and MNE Resources in Emerging Markets

    Get PDF
    This chapter addresses equity ownership strategy in greenfield investments by multinational enterprises (MNEs) in the emerging markets (EMs). It is one of the few studies to hypothesize and analyze influences of host EM physical infrastructure in relation to investment decisions of MNEs. We use resource dependence theory (RDT) as a theoretical basis and test the moderating effects of firm resources like size and host country investment experience. Moreover, the current study assumes a more nuanced approach to studying equity ownership by analyzing wholly owned subsidiaries versus joint ventures (JVs) and including majority versus minority JVs in the analysis as well. The empirical results based on greenfield investments undertaken by Nordic (Danish, Finnish, Norwegian, and Swedish) MNEs in EMs during 1990–2015 reveals the importance of host country physical infrastructure for high equity ownership strategy. Moreover, host country investment experience moderates the effect of physical infrastructure on equity ownership strategy. Finally, the analysis of a sub-sample of greenfield JVs reveals that determinants of equity ownership strategy differ somewhat between greenfield JV or greenfield wholly owned subsidiaries (WOS).© The Author(s) 2019.fi=vertaisarvioitu|en=peerReviewed

    A reversible light- and genotype-dependent acquired thermotolerance response protects the potato plant from damage due to excessive temperature

    Get PDF
    A powerful acquired thermotolerance response in potato was demonstrated and characterised in detail, showing the time course required for tolerance, the reversibility of the process and requirement for light. Potato is particularly vulnerable to increased temperature, considered to be the most important uncontrollable factor affecting growth and yield of this globally significant crop. Here, we describe an acquired thermotolerance response in potato, whereby treatment at a mildly elevated temperature primes the plant for more severe heat stress. We define the time course for acquiring thermotolerance and demonstrate that light is essential for the process. In all four commercial tetraploid cultivars that were tested, acquisition of thermotolerance by priming was required for tolerance at elevated temperature. Accessions from several wild-type species and diploid genotypes did not require priming for heat tolerance under the test conditions employed, suggesting that useful variation for this trait exists. Physiological, transcriptomic and metabolomic approaches were employed to elucidate potential mechanisms that underpin the acquisition of heat tolerance. This analysis indicated a role for cell wall modification, auxin and ethylene signalling, and chromatin remodelling in acclimatory priming resulting in reduced metabolic perturbation and delayed stress responses in acclimated plants following transfer to 40 °C

    Ulcerogenic Helicobacter pylori Strains Isolated from Children: A Contribution to Get Insight into the Virulence of the Bacteria

    Get PDF
    Infection with Helicobacter pylori is the major cause for the development of peptic ulcer disease (PUD). In children, with no other etiology for the disease, this rare event occurs shortly after infection. In these young patients, habits of smoking, diet, consumption of alcohol and non-steroid anti-inflammatory drugs and stress, in addition to the genetic susceptibility of the patient, represent a minor influence. Accordingly, the virulence of the implicated H. pylori strain should play a crucial role in the development of PUD. Corroborating this, our in vitro infection assays comparing a pool of five H. pylori strains isolated from children with PUD to a pool of five other pediatric clinical isolates associated with non-ulcer dyspepsia (NUD) showed the greater ability of PUD strains to induce a marked decrease in the viability of gastric cells and to cause severe damage in the cells cytoskeleton as well as an impairment in the production/secretion of mucins. To uncover virulence features, we compared the proteome of these two groups of H. pylori strains. Two-dimensional gel electrophoresis followed by mass-spectrometry allowed us to detect 27 differentially expressed proteins between them. In addition to the presence of genes encoding well established virulence factors, namely cagA, vacAs1, oipA “on” status, homB and jhp562 genes, the pediatric ulcerogenic strains shared a proteome profile characterized by changes in the abundance of: motility-associated proteins, accounting for higher motility; antioxidant proteins, which may confer increased resistance to inflammation; and enzymes involved in key steps in the metabolism of glucose, amino acids and urea, which may be advantageous to face fluctuations of nutrients. In conclusion, the enhanced virulence of the pediatric ulcerogenic H. pylori strains may result from a synergy between their natural ability to better adapt to the hostile human stomach and the expression of the established virulence factors

    Mechanisms of TSC-mediated Control of Synapse Assembly and Axon Guidance

    Get PDF
    Tuberous sclerosis complex is a dominant genetic disorder produced by mutations in either of two tumor suppressor genes, TSC1 and TSC2; it is characterized by hamartomatous tumors, and is associated with severe neurological and behavioral disturbances. Mutations in TSC1 or TSC2 deregulate a conserved growth control pathway that includes Ras homolog enriched in brain (Rheb) and Target of Rapamycin (TOR). To understand the function of this pathway in neural development, we have examined the contributions of multiple components of this pathway in both neuromuscular junction assembly and photoreceptor axon guidance in Drosophila. Expression of Rheb in the motoneuron, but not the muscle of the larval neuromuscular junction produced synaptic overgrowth and enhanced synaptic function, while reductions in Rheb function compromised synapse development. Synapse growth produced by Rheb is insensitive to rapamycin, an inhibitor of Tor complex 1, and requires wishful thinking, a bone morphogenetic protein receptor critical for functional synapse expansion. In the visual system, loss of Tsc1 in the developing retina disrupted axon guidance independently of cellular growth. Inhibiting Tor complex 1 with rapamycin or eliminating the Tor complex 1 effector, S6 kinase (S6k), did not rescue axon guidance abnormalities of Tsc1 mosaics, while reductions in Tor function suppressed those phenotypes. These findings show that Tsc-mediated control of axon guidance and synapse assembly occurs via growth-independent signaling mechanisms, and suggest that Tor complex 2, a regulator of actin organization, is critical in these aspects of neuronal development

    African American patients with gout: efficacy and safety of febuxostat vs allopurinol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>African Americans are twice as likely as Caucasians to develop gout, but they are less likely to be treated with urate-lowering therapy (ULT). Furthermore, African Americans typically present with more comorbidities associated with gout, such as hypertension, obesity, and renal impairment. We determined the efficacy and safety of ULT with febuxostat or allopurinol in African American subjects with gout and associated comorbidities and in comparison to Caucasian gout subjects.</p> <p>Methods</p> <p>This is a secondary analysis of the 6-month Phase 3 CONFIRMS trial. Eligible gouty subjects with baseline serum urate (sUA) ≥ 8.0 mg/dL were randomized 1:1:1 to receive febuxostat 40 mg, febuxostat 80 mg, or allopurinol (300 mg or 200 mg depending on renal function) daily. All subjects received gout flare prophylaxis. Primary efficacy endpoint was the proportion of subjects in each treatment group with sUA < 6.0 mg/dL at the final visit. Additional endpoints included the proportion of subjects with mild or with moderate renal impairment who achieved a target sUA < 6.0 mg/dL at final visit. Adverse events (AEs) were recorded throughout the study.</p> <p>Results</p> <p>Of the 2,269 subjects enrolled, 10.0% were African American and 82.1% were Caucasian. African American subjects were mostly male (89.5%), obese (BMI ≥ 30 kg/m<sup>2</sup>; 67.1%), with mean baseline sUA of 9.8 mg/dL and mean duration of gout of 10.4 years. The proportions of African American subjects with a baseline history of diabetes, renal impairment, or cardiovascular disease were significantly higher compared to Caucasians (<it>p </it>< 0.001). ULT with febuxostat 80 mg was superior to both febuxostat 40 mg (<it>p </it>< 0.001) and allopurinol (<it>p </it>= 0.004). Febuxostat 40 mg was comparable in efficacy to allopurinol. Significantly more African American subjects with mild or moderate renal impairment achieved sUA < 6.0 mg/dL in the febuxostat 80 group than in either the febuxostat 40 mg or allopurinol group (<it>p </it>< 0.05). Efficacy rates in all treatment groups regardless of renal function were comparable between African American and Caucasian subjects, as were AE rates.</p> <p>Conclusions</p> <p>In African American subjects with significant comorbidities, febuxostat 80 mg is significantly more efficacious than either febuxostat 40 mg or allopurinol 200/300 mg. Febuxostat was well tolerated in this African American population.</p> <p>Please see related article: <url>http://www.biomedcentral.com/1741-7015/10/15</url></p
    corecore