13 research outputs found

    CD(8+ )T lymphocytes in lung tissue from patients with idiopathic pulmonary fibrosis

    Get PDF
    BACKGROUND: Several studies have implicated a role of inflammation in the pathogenesis of lung damage in idiopathic pulmonary fibrosis (IPF). Parenchymal lung damage leads to defects in mechanics and gas exchange and clinically manifests with exertional dyspnea. Investigations of inflammatory cells in IPF have shown that eosinophils, neutrophils and CD(8+ )TLs may be associated with worse prognosis. We wished to investigate by quantitative immunohistochemistry infiltrating macrophages, neutrophils and T lymphocytes (TLs) subpopulations (CD(3+), CD(4+ )and CD(8+)) in lung tissue of patients with IPF and their correlation with lung function indices and grade of dyspnoea. METHODS: Surgical biopsies of 12 patients with IPF were immunohistochemically stained with mouse monoclonal antibodies (anti-CD(68 )for macrophages, anti-elastase for neutrophils, and anti-CD(3), anti-CD(4), anti-CD(8 )for CD(3+)TLs, CD(4+)TLs, and CD(8+)TLs respectively). The number of positively stained cells was determined by observer-interactive computerized image analysis (SAMBA microscopic image processor). Cell numbers were expressed in percentage of immunopositive nuclear surface in relation to the total nuclear surface of infiltrative cells within the tissue (labeling Index). Correlations were performed between cell numbers and physiological indices [FEV(1), FVC, TLC, DLCO, PaO(2), PaCO(2 )and P(A-a)O(2))] as well as dyspnoea scores assessed by the Medical Research Council (MRC) scale. RESULTS: Elastase positive cells accounted for the 7.04% ± 1.1 of total cells, CD(68+ )cells for the 16.6% ± 2, CD(3+ )TLs for the 28.8% ± 7, CD(4+ )TLs for the 14.5 ± 4 and CD(8+ )TLs for the 13.8 ± 4. CD(8+)TLs correlated inversely with FVC % predicted (r(s )= -0.67, p = 0.01), TLC % predicted (r(s )= -0.68, p = 0.01), DLCO % predicted (r(s )= -0.61, p = 0.04), and PaO(2 )(r(s )= -0.60, p = 0.04). Positive correlations were found between CD(8+)TLs and P(A-a)O(2 )(r(s )= 0.65, p = 0.02) and CD(8+)TLs and MRC score (r(s )= 0.63, p = 0.02). Additionally, CD(68+ )cells presented negative correlations with both FVC % predicted (r(s )= -0.80, p = 0.002) and FEV(1 )% predicted (r(s )= -0.68, p = 0.01). CONCLUSION: In UIP/IPF tissue infiltrating mononuclear cells and especially CD(8+ )TLs are associated with the grade of dyspnoea and functional parameters of disease severity implicating that they might play a role in its pathogenesis

    “Where, O Death, Is Thy Sting?” A Brief Review of Apoptosis Biology

    Get PDF
    Apoptosis was a term introduced in 1972 to distinguish a mode of cell death with characteristic morphology and apparently regulated, endogenously driven mechanisms. The effector processes responsible for apoptosis are now mostly well known, involving activation of caspases and Bcl2 family members in response to a wide variety of physiological and injury-induced signals. The factors that lead of the decision to activate apoptosis as opposed to adaptive responses to such signals (e.g. autophagy, cycle arrest, protein synthesis shutoff) are less well understood, but the intranuclear Promyelocytic Leukaemia Body (PML body) may create a local microenvironment in which the audit of DNA damage may occur, informed by the extent of the damage, the adequacy of its repair and other aspects of cell status

    Patient Safety in Internal Medicine

    Get PDF
    AbstractHospital Internal Medicine (IM) is the branch of medicine that deals with the diagnosis and non-surgical treatment of diseases, providing the comprehensive care in the office and in the hospital, managing both common and complex illnesses of adolescents, adults, and the elderly. IM is a key ward for Health National Services. In Italy, for example, about 17.3% of acute patients are discharged from the IM departments. After the epidemiological transition to chronic/degenerative diseases, patients admitted to hospital are often poly-pathological and so requiring a global approach as in IM. As such transition was not associated—with rare exceptions—to hospital re-organization of beds and workforce, IM wards are often overcrowded, burdened by off-wards patients and subjected to high turnover and discharge pressure. All these factors contribute to amplify some traditional clinical risks for patients and health operators. The aim of our review is to describe several potential errors and their prevention strategies, which should be implemented by physicians, nurses, and other healthcare professionals working in IM wards

    Mutations of the PU.1 Ets domain are specifically associated with murine radiation-induced, but not human therapy-related, acute myeloid leukaemia.

    No full text
    Murine radiation-induced acute myeloid leukaemia (AML) is characterized by loss of one copy of chromosome 2. Previously, we positioned the critical haematopoietic-specific transcription factor PU.1 within a minimally deleted region. We now report a high frequency (>65%) of missense mutation at codon 235 in the DNA-binding Ets domain of PU.1 in murine AML. Earlier studies, outside the context of malignancy, determined that conversion of arginine 235 (R235) to any other amino-acid residue leads to ablation of DNA-binding function and loss of expression of downstream targets. We show that mutation of R235 does not lead to protein loss, and occurs specifically in those AMLs showing loss of one copy of PU.1 (P=0.001, Fisher's exact test). PU.1 mutations were not found in the coding region, UTRs or promoter of human therapy-related AMLs. Potentially regulatory elements upstream of PU.1 were located but no mutations found. In conclusion, we have identified the cause of murine radiation-induced AML and have shown that loss of one copy of PU.1, as a consequence of flanking radiation-sensitive fragile domains on chromosome 2, and subsequent R235 conversion are highly specific to this mouse model. Such a mechanism does not operate, or is extremely rare, in human AML

    Immune reconstitution in chronic lymphocytic leukemia

    No full text
    Chronic lymphocytic leukemia (CLL) is associated with a profound immune defect, which results in increased susceptibility to recurrent infections as well as a failure to mount effective antitumor immune responses. Current chemotherapy-based regimens are not curative and often worsen this immune suppression, so their usefulness is limited, particularly in the frail and elderly. This article reviews the immune defect in CLL and discusses strategies aimed at repairing or circumventing this defect. In particular, it focuses on recent developments in the areas of CD40 ligand (CD40L/CD154) gene therapy, immunomodulatory agents such as lenalidomide, and adoptive transfer of T cells bearing chimeric antigen receptors
    corecore