32 research outputs found

    Amyloids - A functional coat for microorganisms

    Get PDF
    Amyloids are filamentous protein structures ~10 nm wide and 0.1–10 µm long that share a structural motif, the cross-β structure. These fibrils are usually associated with degenerative diseases in mammals. However, recent research has shown that these proteins are also expressed on bacterial and fungal cell surfaces. Microbial amyloids are important in mediating mechanical invasion of abiotic and biotic substrates. In animal hosts, evidence indicates that these protein structures also contribute to colonization by activating host proteases that are involved in haemostasis, inflammation and remodelling of the extracellular matrix. Activation of proteases by amyloids is also implicated in modulating blood coagulation, resulting in potentially life-threatening complications.

    Introns are necessary for mRNA accumulation in Schizophyllum commune

    No full text
    The cDNA coding sequence of the Agaricus bisporus hydrophobin gene ABH1 under the regulation sequences of the Schizophyllum commune SC3 hydrophobin gene gave no expression in S. commune. In contrast, the genomic coding sequence (containing three introns) produced high levels of ABH1 mRNA when transformed to S. commune in the same configuration, Apparently, introns were needed for the accumulation of mRNAs from the ABH1 gene, When the effect of intron deletion on expression of the homologous genes SC3 and SC6 was examined, it was observed that only the genomic coding sequences were expressed in S. commune, Run-on analysis with nuclei harbouring intron-containing and intronless SC6 showed that this effect did not occur at the level of transcription initiation: genomic and cDNA sequences were equally active in this respect. When a 50 bp artificial intron containing the consensus splice and branch sites of S, commune introns, in addition to random-generated sequences, was introduced in the right orientation into the intronless SC3 transcriptional unit, accumulation of SC3 mRNA was restored. By polymerase chain reaction amplification, no unspliced SC3 mRNA species could be detected, Furthermore, the addition of an intron into the transcriptional unit of the gene for green fluorescent protein (GFP) effected clear fluorescence of the transgenic hyphae. Apparently, splicing is required for the normal processing of primary transcripts in S. commune

    Hydrophobins line air channels in fruiting bodies of Schizophyllum commune and Agaricus bisporus

    No full text
    The hydrophobin SC4 was isolated from the medium of a dikaryon from Schizophyllum commune with disrupted SC3 genes. Although not glycosylated, its biophysical properties were similar to those of SC3. As the hydrophobins SC3 from S. commune and ABH1 and ABH3 from Agaricus bisporus, SC4 self-assembled at hydrophilic-hydrophobic interfaces into an SDS insoluble amphipathic film with a typical rodlet structure at its hydrophobic face, and also proved to be a powerful surfactant. Similar rodlet structures were observed in the fruiting body plectenchyma. By immunodetection SC4 could be localized lining air channels within this tissue. A similar localization was found for the ABH1 hydrophobin in fruiting bodies of A. bisporus. Probably, these hydrophobin coatings prevent collapse of air channels allowing efficient gas exchange even under wet conditions
    corecore