93 research outputs found

    The C-terminal helical bundle of the tetrameric prokaryotic sodium channel accelerates the inactivation rate

    Get PDF
    Most tetrameric channels have cytosolic domains to regulate their functions, including channel inactivation. Here we show that the cytosolic C-terminal region of NavSulP, a prokaryotic voltage-gated sodium channel cloned from Sulfitobacter pontiacus, accelerates channel inactivation. The crystal structure of the C-terminal region of NavSulP grafted into the C-terminus of a NaK channel revealed that the NavSulP C-terminal region forms a four-helix bundle. Point mutations of the residues involved in the intersubunit interactions of the four-helix bundle destabilized the tetramer of the channel and reduced the inactivation rate. The four-helix bundle was directly connected to the inner helix of the pore domain, and a mutation increasing the rigidity of the inner helix also reduced the inactivation rate. These findings suggest that the NavSulP four-helix bundle has important roles not only in stabilizing the tetramer, but also in accelerating the inactivation rate, through promotion of the conformational change of the inner helix

    Unambiguous observation of blocked states reveals altered, blocker-induced, cardiac ryanodine receptor gating

    Get PDF
    The flow of ions through membrane channels is precisely regulated by gates. The architecture and function of these elements have been studied extensively, shedding light on the mechanisms underlying gating. Recent investigations have focused on ion occupancy of the channel’s selectivity filter and its ability to alter gating, with most studies involving prokaryotic K+ channels. Some studies used large quaternary ammonium blocker molecules to examine the effects of altered ionic flux on gating. However, the absence of blocking events that are visibly distinct from closing events in K+ channels makes unambiguous interpretation of data from single channel recordings difficult. In this study, the large K+ conductance of the RyR2 channel permits direct observation of blocking events as distinct subconductance states and for the first time demonstrates the differential effects of blocker molecules on channel gating. This experimental platform provides valuable insights into mechanisms of blocker-induced modulation of ion channel gating

    On Conduction in a Bacterial Sodium Channel

    Get PDF
    Voltage-gated Na+-channels are transmembrane proteins that are responsible for the fast depolarizing phase of the action potential in nerve and muscular cells. Selective permeability of Na+ over Ca2+ or K+ ions is essential for the biological function of Na+-channels. After the emergence of the first high-resolution structure of a Na+-channel, an anionic coordination site was proposed to confer Na+ selectivity through partial dehydration of Na+ via its direct interaction with conserved glutamate side chains. By combining molecular dynamics simulations and free-energy calculations, a low-energy permeation pathway for Na+ ion translocation through the selectivity filter of the recently determined crystal structure of a prokaryotic sodium channel from Arcobacter butzleri is characterised. The picture that emerges is that of a pore preferentially occupied by two ions, which can switch between different configurations by crossing low free-energy barriers. In contrast to K+-channels, the movements of the ions appear to be weakly coupled in Na+-channels. When the free-energy maps for Na+ and K+ ions are compared, a selective site is characterised in the narrowest region of the filter, where a hydrated Na+ ion, and not a hydrated K+ ion, is energetically stable

    The structure of the KtrAB potassium transporter

    Get PDF
    In bacteria, archaea, fungi and plants the Trk, Ktr and HKT ion transporters are key components of osmotic regulation, pH homeostasis and resistance to drought and high salinity. These ion transporters are functionally diverse: they can function as Na+ or K+ channels and possibly as cation/K+ symporters. They are closely related to potassium channels both at the level of the membrane protein and at the level of the cytosolic regulatory domains. Here we describe the crystal structure of a Ktr K+ transporter, the KtrAB complex from Bacillus subtilis. The structure shows the dimeric membrane protein KtrB assembled with a cytosolic octameric KtrA ring bound to ATP, an activating ligand. A comparison between the structure of KtrAB-ATP and the structures of the isolated full-length KtrA protein with ATP or ADP reveals a ligand-dependent conformational change in the octameric ring, raising new ideas about the mechanism of activation in these transporters.We are grateful for access to ID14-1/ID14-4/ID-29 at ESRF (through the Portuguese BAG), PXII at SLS, XRD1 at ELETTRA and PROXIMA1 at SOLEIL and thank the respective support staff. A.S. was supported by FEBS (Long term fellowship). This work was funded by EMBO (Installation grant), by FEDER funds through the Operational Competitiveness Program-COMPETE and by National Funds through FCT-Fundacao para a Ciencia e a Tecnologia under the projects FCOMP-01-0124-FEDER-022718 (PEst-C/SAU/LA0002/2011), FCOMP-01-0124-FEDER-009028 (PTDC/BIA-PRO/099861/2008) and FCOMP-01-0124-FEDER-010781 (PTDC/QUI-BIQ/105342/2008). We also thank G. Gabant and M. Cadene at the 'Plateforme de Spectrometrie de Masse' at CBM, CNRS, Orleans for mass spectrometry analysis, and C. Harley for critical reading of the manuscript

    Gating of a pH-Sensitive K2P Potassium Channel by an Electrostatic Effect of Basic Sensor Residues on the Selectivity Filter

    Get PDF
    K+ channels share common selectivity characteristics but exhibit a wide diversity in how they are gated open. Leak K2P K+ channels TASK-2, TALK-1 and TALK-2 are gated open by extracellular alkalinization. The mechanism for this alkalinization-dependent gating has been proposed to be the neutralization of the side chain of a single arginine (lysine in TALK-2) residue near the pore of TASK-2, which occurs with the unusual pKa of 8.0. We now corroborate this hypothesis by transplanting the TASK-2 extracellular pH (pHo) sensor in the background of a pHo-insensitive TASK-3 channel, which leads to the restitution of pHo-gating. Using a concatenated channel approach, we also demonstrate that for TASK-2 to open, pHo sensors must be neutralized in each of the two subunits forming these dimeric channels with no apparent cross-talk between the sensors. These results are consistent with adaptive biasing force analysis of K+ permeation using a model selectivity filter in wild-type and mutated channels. The underlying free-energy profiles confirm that either a doubly or a singly charged pHo sensor is sufficient to abolish ion flow. Atomic detail of the associated mechanism reveals that, rather than a collapse of the pore, as proposed for other K2P channels gated at the selectivity filter, an increased height of the energetic barriers for ion translocation accounts for channel blockade at acid pHo. Our data, therefore, strongly suggest that a cycle of protonation/deprotonation of pHo-sensing arginine 224 side chain gates the TASK-2 channel by electrostatically tuning the conformational stability of its selectivity filter

    Direct knock-on of desolvated ions governs strict ion selectivity in K+ channels

    Get PDF
    The seeming contradiction that K+ channels conduct K+ ions at maximal throughput rates while not permeating slightly smaller Na+ ions has perplexed scientists for decades. Although numerous models have addressed selective permeation in K+ channels, the combination of conduction efficiency and ion selectivity has not yet been linked through a unified functional model. Here, we investigate the mechanism of ion selectivity through atomistic simulations totalling more than 400 μs in length, which include over 7,000 permeation events. Together with free-energy calculations, our simulations show that both rapid permeation of K+ and ion selectivity are ultimately based on a single principle: the direct knock-on of completely desolvated ions in the channels' selectivity filter. Herein, the strong interactions between multiple 'naked' ions in the four filter binding sites give rise to a natural exclusion of any competing ions. Our results are in excellent agreement with experimental selectivity data, measured ion interaction energies and recent two-dimensional infrared spectra of filter ion configurations

    Time trends in socioeconomic differences in incidence rates of cancers of gastro-intestinal tract in Finland

    Get PDF
    BACKGROUND: The magnitude of socioeconomic differences in health varies between societies, and over time within a given society. We studied the association between social class and incidence of cancers of the gastro-intestinal tract over time in a large cohort in Finland. METHODS: We studied social class variation among 45–69 year-old Finns during 1971–95 in incidence of cancers of the gastro-intestinal tract by means of a computerized record linkage of the Finnish Cancer Registry and the 1970 Population Census, which included social class data. RESULTS: There were 2.3 million individuals in the cohort under follow-up, with 1622 cases of cancer of the esophagus, 8069 stomach (non-cardia), 1116 cardia, 408 small intestine, 6361 colon, 5274 rectum, 1616 liver, 1756 gallbladder, and 5084 pancreas during 1971–1995. Cancers of the esophagus, stomach, cardia, gallbladder and pancreas were most common among persons belonging to a low social class. Cancers of the small intestine in males only, colon in both genders, and rectum in females were most common in the higher social classes. Incidence of stomach cancer decreased and incidence of colon cancer increased over time in both genders in all social classes, and the large differences between social classes remained unchanged over time. Incidence rates of cardia cancer did not change substantially over time. CONCLUSION: There is a large variation in incidence of cancer of the gastrointestinal tract by social class in Finland. Although much of the observed social class differences probably could be explained by known etiological factors such as diet, physical exercise, alcohol consumption, smoking and exogenous hormone use, part of the variation is apparently attributable to largely unknown factors

    Pharmacologically Reversible, Loss of Function Mutations in the tm2 and tm4 Inner Pore Helices of Trek-1 k2p Channels

    Get PDF
    A better understanding of the gating of TREK two pore domain potassium (K2P) channels and their activation by compounds such as the negatively charged activator, flufenamic acid (FFA) is critical in the search for more potent and selective activators of these channels. Currents through wild-type and mutated human K2P channels expressed in tsA201 cells were measured using whole-cell patch-clamp recordings in the presence and absence of FFA. Mutation of the TM2.6 residue of TREK-1 to a phenylalanine (G171F) and a similar mutation of TM4.6 (A286F) substantially reduced current through TREK-1 channels. In complementary experiments, replacing the natural F residues at the equivalent position in TRESK channels, significantly enhanced current. Known, gain of function mutations of TREK-1 (G137I, Y284A) recovered current through these mutated channels. This reduction in current could be also be reversed pharmacologically, by FFA. However, an appropriate length MTS (MethaneThioSulfonate) cross-linking reagent (MTS14) restricted the activation of TREK-1_A286C channels by repeated application of FFA. This suggests that the cross-linker stabilises the channel in a conformation which blunts FFA activation. Pharmacologically reversible mutations of TREK channels will help to clarify the importance of these channels in pathophysiological conditions such as pain and depression

    Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels

    Full text link

    Activation of the mechanosensitive ion channel MscL by mechanical stimulation of supported Droplet-Hydrogel bilayers

    No full text
    © 2017 The Author(s). The droplet on hydrogel bilayer (DHB) is a novel platform for investigating the function of ion channels. Advantages of this setup include tight control of all bilayer components, which is compelling for the investigation of mechanosensitive (MS) ion channels, since they are highly sensitive to their lipid environment. However, the activation of MS ion channels in planar supported lipid bilayers, such as the DHB, has not yet been established. Here we present the activation of the large conductance MS channel of E. coli, (MscL), in DHBs. By selectively stretching the droplet monolayer with nanolitre injections of buffer, we induced quantifiable DHB tension, which could be related to channel activity. The MscL activity response revealed that the droplet monolayer tension equilibrated over time, likely by insertion of lipid from solution. Our study thus establishes a method to controllably activate MS channels in DHBs and thereby advances studies of MS channels in this novel platform
    • …
    corecore