444 research outputs found
Exercise-Induced Changes in Exhaled NO Differentiates Asthma With or Without Fixed Airway Obstruction From COPD With Dynamic Hyperinflation.
Asthmatic patients with fixed airway obstruction (FAO) and patients with chronic obstructive pulmonary disease (COPD) share similarities in terms of irreversible pulmonary function impairment. Exhaled nitric oxide (eNO) has been documented as a marker of airway inflammation in asthma, but not in COPD. To examine whether the basal eNO level and the change after exercise may differentiate asthmatics with FAO from COPD, 27 normal subjects, 60 stable asthmatics, and 62 stable COPD patients were studied. Asthmatics with FAO (n = 29) were defined as showing a postbronchodilator FEV(1)/forced vital capacity (FVC) ≤70% and FEV(1) less than 80% predicted after inhaled salbutamol (400 μg). COPD with dynamic hyperinflation (n = 31) was defined as a decrease in inspiratory capacity (ΔIC%) after a 6 minute walk test (6MWT). Basal levels of eNO were significantly higher in asthmatics and COPD patients compared to normal subjects. The changes in eNO after 6MWT were negatively correlated with the percent change in IC (r = −0.380, n = 29, P = 0.042) in asthmatics with FAO. Their levels of basal eNO correlated with the maximum mid-expiratory flow (MMEF % predicted) before and after 6MWT. In COPD patients with air-trapping, the percent change of eNO was positively correlated to ΔIC% (rs = 0.404, n = 31, P = 0.024). We conclude that asthma with FAO may represent residual inflammation in the airways, while dynamic hyperinflation in COPD may retain NO in the distal airspace. eNO changes after 6MWT may differentiate the subgroups of asthma or COPD patients and will help toward delivery of individualized therapy for airflow obstruction
Uniformization, Calogero-Moser/Heun duality and Sutherland/bubbling pants
Inspired by the work of Alday, Gaiotto and Tachikawa (AGT), we saw the
revival of Poincar{\'{e}}'s uniformization problem and Fuchsian equations
obtained thereof.
Three distinguished aspects are possessed by Fuchsian equations. First, they
are available via imposing a classical Liouville limit on level-two null-vector
conditions. Second, they fall into some A_1-type integrable systems. Third, the
stress-tensor present there (in terms of the Q-form) manifests itself as a kind
of one-dimensional "curve".
Thereby, a contact with the recently proposed Nekrasov-Shatashvili limit was
soon made on the one hand, whilst the seemingly mysterious derivation of
Seiberg-Witten prepotentials from integrable models become resolved on the
other hand. Moreover, AGT conjecture can just be regarded as a quantum version
of the previous Poincar{\'{e}}'s approach.
Equipped with these observations, we examined relations between spheric and
toric (classical) conformal blocks via Calogero-Moser/Heun duality. Besides, as
Sutherland model is also obtainable from Calogero-Moser by pinching tori at one
point, we tried to understand its eigenstates from the viewpoint of toric
diagrams with possibly many surface operators (toric branes) inserted. A
picture called "bubbling pants" then emerged and reproduced well-known results
of the non-critical self-dual c=1 string theory under a "blown-down" limit.Comment: 17 pages, 4 figures; v2: corrections and references added; v3:
Section 2.4.1 newly added thanks to JHEP referee advice. That classical
four-point spheric conformal blocks reproducing known SW prepotentials is
demonstrated via more examples, to appear in JHEP; v4: TexStyle changed onl
Genus-one correction to asymptotically free Seiberg-Witten prepotential from Dijkgraaf-Vafa matrix model
We find perfect agreements on the genus-one correction to the prepotential of
SU(2) Seiberg-Witten theory with N_f=2, 3 between field theoretical and
Dijkgraaf-Vafa-Penner type matrix model results.Comment: 12 pages; v2: minor revision; v3: more structured, submitted versio
Photon Management in Two-Dimensional Disordered Media
Elaborating reliable and versatile strategies for efficient light coupling
between free space and thin films is of crucial importance for new technologies
in energy efficiency. Nanostructured materials have opened unprecedented
opportunities for light management, notably in thin-film solar cells. Efficient
coherent light trapping has been accomplished through the careful design of
plasmonic nanoparticles and gratings, resonant dielectric particles and
photonic crystals. Alternative approaches have used randomly-textured surfaces
as strong light diffusers to benefit from their broadband and wide-angle
properties. Here, we propose a new strategy for photon management in thin films
that combines both advantages of an efficient trapping due to coherent optical
effects and broadband/wide-angle properties due to disorder. Our approach
consists in the excitation of electromagnetic modes formed by multiple light
scattering and wave interference in two-dimensional random media. We show, by
numerical calculations, that the spectral and angular responses of thin films
containing disordered photonic patterns are intimately related to the in-plane
light transport process and can be tuned through structural correlations. Our
findings, which are applicable to all waves, are particularly suited for
improving the absorption efficiency of thin-film solar cells and can provide a
novel approach for high-extraction efficiency light-emitting diodes
Treatment strategies and prognostic factors of patients with primary germ cell tumors in the mediastinum
Se presenta una paciente que fue intervenida quirúrgicamente por presentar una lesión tumoral a nivel del mediastino anterior, totalmente asintomática y descubierta, de forma incidental (incidentaloma), en el estudio preoperatorio por padecer litiasis vesicular. La tumoración resultó ser, histológicamente, un teratoma quístico maduro. La paciente evolucionó satisfactoriamente.It presents a patient who was surgery because of a tumor at the level of the anterior mediastinum, totally asymptomatic and uncovered, incidentally (incidentaloma), in the preoperative study due to vesicular lithiasis. The tumor turned out to be, histologically, a mature cystic teratoma. The patient evolved satisfactorily
Magnetic Anisotropic Energy Gap and Strain Effect in Au Nanoparticles
We report on the observation of the size effect of thermal magnetization in Au nanoparticles. The thermal deviation of the saturation magnetization departs substantially from that predicted by the Bloch T3/2-law, indicating the existence of magnetic anisotropic energy. The results may be understood using the uniaxial anisotropy Heisenberg model, in which the surface atoms give rise to polarized moments while the magnetic anisotropic energy decreases as the size of the Au nanoparticles is reduced. There is a significant maximum magnetic anisotropic energy found for the 6 nm Au nanoparticles, which is associated with the deviation of the lattice constant due to magnetocrystalline anisotropy
Reduction of Plasma Gelsolin Levels Correlates with Development of Multiple Organ Dysfunction Syndrome and Fatal Outcome in Burn Patients
BACKGROUND: Depletion of the circulating actin-binding protein, plasma gelsolin (pGSN) has been described in critically ill surgical patients. We hypothesized that the extent of pGSN reduction might correlate with different outcome of burn patients. The study was performed to evaluate the prognostic implications of pGSN levels on the development of multiple organ dysfunction syndrome (MODS) and fatal outcome in a group of severely burn patients. METHODS AND FINDINGS: 95 patients were included, and they were divided into three groups with different burn area: group I (n = 33), group II (n = 32) and group III (n = 30). According to whether there was development of MODS or not, patients were divided into MODS group (n = 28) and none-MODS group (n = 67); then the patients with MODS were further divided into non-survivor group (n = 17) and survivor group (n = 11). The peripheral blood samples were collected on postburn days (PBD) 1, 3, 7, 14, and 21. The levels of pGSN were determined and T cells were procured from the blood. The contents of cytokines (IL-2, IL-4 and IFN-γ) released by T cells were also measured. The related factors of prognosis were analyzed by using multivariate logistic regression analysis. The results showed that pGSN concentrations, as well as the levels of IL-2 and IFN-γ, decreased markedly on PBD 1-21, whereas, the levels of IL-4 increased markedly in all burn groups as compared with normal controls (P<0.05 or P<0.01), and there were obviously differences between group I and group III (P<0.05 or P<0.01). The similar results were found in MODS patients and the non-survivor group as compared with those without MODS and the survival group on days 3-21 postburn (P<0.05 or P<0.01). Moreover, as the pGSN levels decreased, the incidence of septic complication as well as MODS remarkably increased. CONCLUSIONS: pGSN levels appear to be an early prognostic marker in patients suffering from major burns
A Plant Kavalactone Desmethoxyyangonin PreventsInflammation and Fulminant Hepatitis in Mice
Alpinia pricei Hayata is a Formosan plant which has been popularly used as nutraceutical or folk medicine for inflammation and various disorders. An active compound of the plant rhizomes, desmethoxyyangonin (DMY), was identified in this study for its novel effect against endotoxin lipopolysaccharide (LPS)-stimulated inflammation in murine macrophages and LPS/D-galactosamine (LPS/D-GalN)-induced fulminant hepatitis in mice. DMY was observed to significantly inhibit proliferation and activation of T cells ex vivo and the activity of several pro-inflammatory mediators in vitro. DMY also protected LPS/D-GalN−induced acute hepatic damages in mice through inhibiting aminotransferases activities and infiltrations of inflammatory macrophages, neutrophils and pathogenic T cells into the liver tissues. In addition, pretreatment with DMY significantly improved the survival rate of LPS/D-GalN−treated mice to 90% (9/10), compared to LPS/D-GalN−treated group (40%, 4/10). UPLC/MS platform-based comparative metabolomics approach was used to explore the serum metabolic profile in fulminant hepatic failure (FHF) mice with or without the DMY pretreatment. The results showed that LPS/D-GalN−induced hepatic damage is likely through perturbing amino acid metabolism, which leads to decreased pyruvate formation via catalysis of aminotransferases, and DMY treatment can prevent to a certain degree of these alterations in metabolic network in mouse caused by LPS/D-GalN. Mechanistic investigation demonstrated that DMY protects LPS or LPS/D-GalN−induced damages in cell or liver tissues mainly through de-regulating IKK/NFκB and Jak2/STAT3 signaling pathways. This report provides evidence-based knowledge to support the rationale for the use of A. pricei root extract in anti-inflammation and also its new function as hepatoprotetive agent against fulminant hepatitis
Hunting imaging biomarkers in pulmonary fibrosis: Benchmarks of the AIIB23 challenge
Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway structures remains prohibitively time-consuming. While significant efforts have been made towards enhancing automatic airway modelling, current public-available datasets predominantly concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for mortality prediction, a strong airway-derived biomarker (Hazard ratio>1.5, p < 0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers
- …