63 research outputs found
Recommended from our members
Monte Carlo control loops for cosmic shear cosmology with DES Year 1 data
Weak lensing by large-scale structure is a powerful probe of cosmology and of the dark universe. This cosmic shear technique relies on the accurate measurement of the shapes and redshifts of background galaxies and requires precise control of systematic errors. Monte Carlo control loops (MCCL) is a forward modeling method designed to tackle this problem. It relies on the ultra fast image generator (UFig) to produce simulated images tuned to match the target data statistically, followed by calibrations and tolerance loops. We present the first end-to-end application of this method, on the Dark Energy Survey (DES) Year 1 wide field imaging data. We simultaneously measure the shear power spectrum
C
â
and the redshift distribution
n
(
z
)
of the background galaxy sample. The method includes maps of the systematic sources, point spread function (PSF), an approximate Bayesian computation (ABC) inference of the simulation model parameters, a shear calibration scheme, and a fast method to estimate the covariance matrix. We find a close statistical agreement between the simulations and the DES Y1 data using an array of diagnostics. In a nontomographic setting, we derive a set of
C
â
and
n
(
z
)
curves that encode the cosmic shear measurement, as well as the systematic uncertainty. Following a blinding scheme, we measure the combination of
Ω
m
,
Ï
8
, and intrinsic alignment amplitude
A
IA
, defined as
S
8
D
IA
=
Ï
8
(
Ω
m
/
0.3
)
0.5
D
IA
, where
D
IA
=
1
â
0.11
(
A
IA
â
1
)
. We find
S
8
D
IA
=
0.89
5
+
0.054
â
0.039
, where systematics are at the level of roughly 60% of the statistical errors. We discuss these results in the context of earlier cosmic shear analyses of the DES Y1 data. Our findings indicate that this method and its fast runtime offer good prospects for cosmic shear measurements with future wide-field surveys
Consistency of cosmic shear analyses in harmonic and real space
Recent cosmic shear studies have reported discrepancies of up to 1Ï on the parameter S8=Ï8Ωm/0.3âŸâŸâŸâŸâŸâŸâŸâS8=Ï8Ωm/0.3 between the analysis of shear power spectra and two-point correlation functions, derived from the same shear catalogues. It is not a priori clear whether the measured discrepancies are consistent with statistical fluctuations. In this paper, we investigate this issue in the context of the forthcoming analyses from the third year data of the Dark Energy Survey (DES Y3). We analyse DES Y3 mock catalogues from Gaussian simulations with a fast and accurate importance sampling pipeline. We show that the methodology for determining matching scale cuts in harmonic and real space is the key factor that contributes to the scatter between constraints derived from the two statistics. We compare the published scales cuts of the KiDS, Subaru-HSC, and DES surveys, and find that the correlation coefficients of posterior means range from over 80 perâcent for our proposed cuts, down to 10 perâcent for cuts used in the literature. We then study the interaction between scale cuts and systematic uncertainties arising from multiple sources: non-linear power spectrum, baryonic feedback, intrinsic alignments, uncertainties in the point spread function, and redshift distributions. We find that, given DES Y3 characteristics and proposed cuts, these uncertainties affect the two statistics similarly; the differential biases are below a third of the statistical uncertainty, with the largest biases arising from intrinsic alignment and baryonic feedback. While this work is aimed at DES Y3, the tools developed can be applied to Stage-IV surveys where statistical errors will be much smaller
Dark Energy Survey year 3 results: point spread function modelling
We introduce a new software package for modelling the point spread function (PSF) of astronomical images, called PIFF (PSFs
In the Full FOV), which we apply to the first three years (known as Y3) of the Dark Energy Survey (DES) data. We describe
the relevant details about the algorithms used by PIFF to model the PSF, including how the PSF model varies across the field
of view (FOV). Diagnostic results show that the systematic errors from the PSF modelling are very small over the range of
scales that are important for the DES Y3 weak lensing analysis. In particular, the systematic errors from the PSF modelling are
significantly smaller than the corresponding results from the DES year one (Y1) analysis. We also briefly describe some planned
improvements to PIFF that we expect to further reduce the modelling errors in future analyses
Recommended from our members
Dark Energy Survey Year 1 Results: Cross-correlation between Dark Energy Survey Y1 galaxy weak lensing and South Pole Telescope +Planck CMB weak lensing
We cross-correlate galaxy weak lensing measurements from the Dark Energy Survey (DES) year-one data with a cosmic microwave background (CMB) weak lensing map derived from South Pole Telescope (SPT) and Planck data, with an effective overlapping area of 1289 deg2. With the combined measurements from four source galaxy redshift bins, we obtain a detection significance of 5.8Ï. We fit the amplitude of the correlation functions while fixing the cosmological parameters to a fiducial ÎCDM model, finding A=0.99±0.17. We additionally use the correlation function measurements to constrain shear calibration bias, obtaining constraints that are consistent with previous DES analyses. Finally, when performing a cosmological analysis under the ÎCDM model, we obtain the marginalized constraints of Ïm=0.261-0.051+0.070 and S8Ï8Ïm/0.3=0.660-0.100+0.085. These measurements are used in a companion work that presents cosmological constraints from the joint analysis of two-point functions among galaxies, galaxy shears, and CMB lensing using DES, SPT, and Planck data
Detection of the significant impact of source clustering on higher-order statistics with DES Year 3 weak gravitational lensing data
We measure the impact of source galaxy clustering on higher-order summary statistics of weak gravitational lensing data. By comparing simulated data with galaxies that either trace or do not trace the underlying density field, we show this effect can exceed measurement uncertainties for common higher-order statistics for certain analysis choices. We evaluate the impact on different weak lensing observables, finding that third moments and wavelet phase harmonics are more affected than peak count statistics. Using Dark Energy Survey Year 3 data we construct null tests for the source-clustering-free case, finding a p-value of p = 4 Ă 10â3 (2.6Ï) using third-order map moments and p = 3 Ă 10â11 (6.5Ï) using wavelet phase harmonics. The impact of source clustering on cosmological inference can be either be included in the model or minimized through ad-hoc procedures (e.g. scale cuts). We verify that the procedures adopted in existing DES Y3 cosmological analyses were sufficient to render this effect negligible. Failing to account for source clustering can significantly impact cosmological inference from higher-order gravitational lensing statistics, e.g. higher-order N-point functions, wavelet-moment observables, and deep learning or field level summary statistics of weak lensing maps
Dark Energy Survey Year 3 results: Exploiting small-scale information with lensing shear ratios
Using the first three years of data from the Dark Energy Survey (DES), we use ratios of small-scale galaxy-galaxy lensing measurements around the same lens sample to constrain source redshift uncertainties, intrinsic alignments and other systematics or nuisance parameters of our model. Instead of using a simple geometric approach for the ratios as has been done in the past, we use the full modeling of the galaxy-galaxy lensing measurements, including the corresponding integration over the power spectrum and the contributions from intrinsic alignments and lens magnification. We perform extensive testing of the small-scale shear-ratio (SR) modeling by studying the impact of different effects such as the inclusion of baryonic physics, nonlinear biasing, halo occupation distribution descriptions and lens magnification, among others, and using realistic N-body simulations of the DES data. We validate the robustness of our constraints in the data by using two independent lens samples with different galaxy properties, and by deriving constraints using the corresponding large-scale ratios for which the modeling is simpler. The results applied to the DES Y3 data demonstrate how the ratios provide significant improvements in constraining power for several nuisance parameters in our model, especially on source redshift calibration and intrinsic alignments. For source redshifts, SR improves the constraints from the prior by up to 38% in some redshift bins. Such improvements, and especially the constraints it provides on intrinsic alignments, translate to tighter cosmological constraints when shear ratios are combined with cosmic shear and other 2pt functions. In particular, for the DES Y3 data, SR improves S8 constraints from cosmic shear by up to 31%, and for the full combination of probes (3Ă2pt) by up to 10%. The shear ratios presented in this work are used as an additional likelihood for cosmic shear, 2Ă2pt and the full 3Ă2pt in the fiducial DES Y3 cosmological analysis
Recommended from our members
Dark Energy Survey Year 1 Results: Tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole Telescope+Planck
We measure the cross-correlation between redMaGiC galaxies selected from the Dark Energy Survey (DES) year 1 data and gravitational lensing of the cosmic microwave background (CMB) reconstructed from South Pole Telescope (SPT) and Planck data over 1289 deg2. When combining measurements across multiple galaxy redshift bins spanning the redshift range of 0.1
Cosmology from cross-correlation of ACT-DR4 CMB lensing and DES-Y3 cosmic shear
Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and Planck data, where most of the contamination due to the thermal Sunyaev Zelâdovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio = 7.1 and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution (S8 ⥠Ï8(Ωm/0.3)0.5 = 0.782 ± 0.059) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6Ă2pt analysis between DES and ACT
Dark Energy Survey year 3 results: Constraints on cosmological parameters and galaxy-bias models from galaxy clustering and galaxy-galaxy lensing using the redMaGiC sample
We constrain cosmological parameters and galaxy-bias parameters using the combination of galaxy clustering and galaxy-galaxy lensing measurements from the Dark Energy Survey (DES) year-3 data. We describe our modeling framework and choice of scales analyzed, validating their robustness to theoretical uncertainties in small-scale clustering by analyzing simulated data. Using a linear galaxy-bias model and redMaGiC galaxy sample, we obtain 10% constraints on the matter density of the Universe. We also implement a nonlinear galaxy-bias model to probe smaller scales that includes parametrization based on hybrid perturbation theory and find that it leads to a 17% gain in cosmological constraining power. We perform robustness tests of our methodology pipeline and demonstrate stability of the constraints to changes in the theory model. Using the redMaGiC galaxy sample as foreground lens galaxies and adopting the best-fitting cosmological parameters from DES year-1 data, we find the galaxy clustering and galaxy-galaxy lensing measurements to exhibit significant signals akin to decorrelation between galaxies and mass on large scales, which is not expected in any current models. This likely systematic measurement error biases our constraints on galaxy bias and the S8 parameter. We find that a scale-, redshift-and sky-Area-independent phenomenological decorrelation parameter can effectively capture this inconsistency between the galaxy clustering and galaxy-galaxy lensing. We trace the source of this correlation to a color-dependent photometric issue and minimize its impact on our result by changing the selection criteria of redMaGiC galaxies. Using this new sample, our constraints on the S8 parameter are consistent with previous studies and we find a small shift in the Ïm constraints compared to the fiducial redMaGiC sample. We infer the constraints on the mean host-halo mass of the redMaGiC galaxies in this new sample from the large-scale bias constraints, finding the galaxies occupy halos of mass approximately 1.6Ă10 13 Mâ/h
- âŠ