5 research outputs found

    Kinetic interaction of 5-AZA-2'-deoxycytidine-5'-monophosphate and its 5'-triphosphate with deoxycytidylate deaminase.

    No full text
    5-AZA-2'-deoxycytidine-5'-monophosphate (5-AZA-dCMP) was tested as a substrate, and 5-aza-2'-deoxycytidine-5'-triphosphate (5-AZA-dCTP) was tested as an allosteric effector of purified spleen dCMP deaminase. Graphic analysis of the velocity of deamination of 5-AZA-dCMP versus its concentration gave a hyperbolic curve in which the estimated apparent Km was 0.1 mM. Since this curve was not sigmoidal and 5-AZA-dCMP at low concentrations stimulated the rate of deamination of the natural substrate, dCMP, it was proposed that the binding of 5-AZA-dCMP to the allosteric enzyme dCMP deaminase induced the R form. At substrate saturation, the rate of deamination of dCMP was 100-fold greater than that of 5-AZA-dCMP. dTTP inhibited the deamination of 5-AZA-dCMP with first-order kinetics. This inhibition was reversed by either 5-AZA-dCTP or dCTP. However, dCTP alone produced only a weak activation of the deamination of 5-AZA-dCMP in comparison to the potent activation when dCMP was the substrate. 5-AZA-dCTP was just as effective as dCTP for the allosteric activation of the deamination of dCMP. These results indicate that dCMP deaminase can play an important role in the metabolism 5-aza-2'-deoxycytidine nucleotides and may possibly modulate some of the pharmacological activity of this antimetabolite

    Transbuccal delivery of 5-Aza-2′-deoxycytidine: Effects of drug concentration, buffer solution, and bile salts on permeation

    No full text
    Delivery of 5-aza-2′-deoxycytidine (decitabine) across porcine buccal mucosa was evaluated as an alternative to the complex intravenous infusion regimen currently used to administer the drug. A reproducible high-performance liquid chromatography method was developed and optimized for the quantitative determination of this drug. Decitabine showed a concentration-dependent passive diffusion process across porcine buccal mucosa. An increase in the ionic strength of the phosphate buffer from 100 to 400 mM decreased the flux from 3.57±0.65 to 1.89±0.61 μg/h/cm2. Trihydroxy bile salts significantly enhanced the flux of decitabine at a 100 mM concentration (P>.05). The steady-state flux of decitabine in the presence of 100 mM of sodium taurocholate and sodium glycocholate was 52.65±9.48 and 85.22±7.61 μg/cm2/h, respectively. Two dihydroxy bile salts, sodium deoxytaurocholate and sodium deoxyglycocholate, showed better enhancement effect than did trihydroxy bile salts. A 38-fold enhancement in flux was achieved with 10 mM of sodium deoxyglycocholate
    corecore