7,947 research outputs found

    Slow Dynamics in a Two-Dimensional Anderson-Hubbard Model

    Full text link
    We study the real-time dynamics of a two-dimensional Anderson--Hubbard model using nonequilibrium self-consistent perturbation theory within the second-Born approximation. When compared with exact diagonalization performed on small clusters, we demonstrate that for strong disorder this technique approaches the exact result on all available timescales, while for intermediate disorder, in the vicinity of the many-body localization transition, it produces quantitatively accurate results up to nontrivial times. Our method allows for the treatment of system sizes inaccessible by any numerically exact method and for the complete elimination of finite size effects for the times considered. We show that for a sufficiently strong disorder the system becomes nonergodic, while for intermediate disorder strengths and for all accessible time scales transport in the system is strictly subdiffusive. We argue that these results are incompatible with a simple percolation picture, but are consistent with the heuristic random resistor network model where subdiffusion may be observed for long times until a crossover to diffusion occurs. The prediction of slow finite-time dynamics in a two-dimensional interacting and disordered system can be directly verified in future cold atoms experimentsComment: Title change and minor changes in the tex

    Mellin-Barnes integrals as Fourier-Mukai transforms

    Get PDF
    We study the generalized hypergeometric system introduced by Gelfand, Kapranov and Zelevinsky and its relationship with the toric Deligne-Mumford (DM) stacks recently studied by Borisov, Chen and Smith. We construct series solutions with values in a combinatorial version of the Chen-Ruan (orbifold) cohomology and in the KK-theory of the associated DM stacks. In the spirit of the homological mirror symmetry conjecture of Kontsevich, we show that the KK-theory action of the Fourier-Mukai functors associated to basic toric birational maps of DM stacks are mirrored by analytic continuation transformations of Mellin-Barnes type.Comment: 55 pages, LaTe
    • …
    corecore