84 research outputs found

    Thrombophlebitis migrans in a man with pancreatic adenocarcinoma: a case report

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    The development and preliminary psychometric properties of two positive psychology outcome measures for people with dementia: the PPOM and the EID-Q.

    Get PDF
    Background: Positive psychology research in dementia care has largely been confined to the qualitative literature because of the lack of robust outcome measures. The aim of this study was to develop positive psychology outcome measures for people with dementia. Methods: Two measures were each developed in four stages. Firstly, literature reviews were conducted to identify and operationalise salient positive psychology themes in the qualitative literature and to examine existing measures of positive psychology. Secondly, themes were discussed within a qualitative study to add content validity for identified concepts (n = 17). Thirdly, draft measures were submitted to a panel of experts for feedback (n = 6). Finally, measures were used in a small-scale pilot study (n = 33) to establish psychometric properties. Results: Salient positive psychology themes were identified as hope, resilience, a sense of independence and social engagement. Existing measures of hope and resilience were adapted to form the Positive Psychology Outcome Measure (PPOM). Due to the inter-relatedness of independence and engagement for people with dementia, 28 items were developed for a new scale of Engagement and Independence in Dementia Questionnaire (EID-Q) following extensive qualitative work. Both measures demonstrated acceptable internal consistency (α = .849 and α = .907 respectively) and convergent validity. Conclusions: Two new positive psychology outcome measures were developed using a robust four-stage procedure. Preliminary psychometric data was adequate and the measures were easy to use, and acceptable for people with dementia

    The Aguablanca Ni–(Cu) sulfide deposit, SW Spain: geologic and geochemical controls and the relationship with a midcrustal layered mafic complex

    Get PDF
    The Aguablanca Ni–(Cu) sulfide deposit is hosted by a breccia pipe within a gabbro–diorite pluton. The deposit probably formed due to the disruption of a partially crystallized layered mafic complex at about 12– 19 km depth and the subsequent emplacement of melts and breccias at shallow levels (<2 km). The ore-hosting breccias are interpreted as fragments of an ultramafic cumulate, which were transported to the near surface along with a molten sulfide melt. Phlogopite Ar–Ar ages are 341– 332 Ma in the breccia pipe, and 338–334 Ma in the layered mafic complex, and are similar to recently reported U–Pb ages of the host Aguablanca Stock and other nearby calcalkaline metaluminous intrusions (ca. 350–330 Ma). Ore deposition resulted from the combination of two critical factors, the emplacement of a layered mafic complex deep in the continental crust and the development of small dilational structures along transcrustal strike-slip faults that triggered the forceful intrusion of magmas to shallow levels. The emplacement of basaltic magmas in the lower middle crust was accompanied by major interaction with the host rocks, immiscibility of a sulfide melt, and the formation of a magma chamber with ultramafic cumulates and sulfide melt at the bottom and a vertically zoned mafic to intermediate magmas above. Dismembered bodies of mafic/ultramafic rocks thought to be parts of the complex crop out about 50 km southwest of the deposit in a tectonically uplifted block (Cortegana Igneous Complex, Aracena Massif). Reactivation of Variscan structures that merged at the depth of the mafic complex led to sequential extraction of melts, cumulates, and sulfide magma. Lithogeochemistry and Sr and Nd isotope data of the Aguablanca Stock reflect the mixing from two distinct reservoirs, i.e., an evolved siliciclastic middle-upper continental crust and a primitive tholeiitic melt. Crustal contamination in the deep magma chamber was so intense that orthopyroxene replaced olivine as the main mineral phase controlling the early fractional crystallization of the melt. Geochemical evidence includes enrichment in SiO2 and incompatible elements, and Sr and Nd isotope compositions (87Sr/86Sri 0.708–0.710; 143Nd/144Ndi 0.512–0.513). However, rocks of the Cortegana Igneous Complex have low initial 87Sr/86Sr and high initial 143Nd/144Nd values suggesting contamination by lower crustal rocks. Comparison of the geochemical and geological features of igneous rocks in the Aguablanca deposit and the Cortegana Igneous Complex indicates that, although probably part of the same magmatic system, they are rather different and the rocks of the Cortegana Igneous Complex were not the direct source of the Aguablanca deposit. Crust–magma interaction was a complex process, and the generation of orebodies was controlled by local but highly variable factors. The model for the formation of the Aguablanca deposit presented in this study implies that dense sulfide melts can effectively travel long distances through the continental crust and that dilational zones within compressional belts can effectively focus such melt transport into shallow environments

    Exploiting bacterial DNA gyrase as a drug target: current state and perspectives

    Get PDF
    DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme

    Hepatotoxicity Associated with Itraconazole

    No full text
    corecore