181 research outputs found
Effects of an experimental resource pulse on the macrofaunal assemblage inhabiting seagrass macrophytodetritus
Physical disturbances and resource pulses are major structuring drivers of terrestrial and aquatic ecosystems. The accumulations of exported dead leaves from the Neptune grass, Posidonia oceanica (L.) Delile are ephemeral and highly dynamic detrital habitats offering food sources and shelter for vagile macrofauna community. These habitats are frequently subject to wind and storms which can add “new” detrital material to previous accumulations; these can be defined as resource pulses and could potentially impact the associated macrofauna. This study assesses the impact of an experimental resource pulse on the macrofauna associated with exported P. oceanica litter accumulations. The experimental design consisted of two pulse treatments (the addition of dead leaves with and without the associated fauna), and two controls (one procedural, and one total control), where the added material was left underwater for 14 days. Invertebrates then present in the sampled detritus were all identified and counted. Our data suggest that the responses of these invertebrates to resource pulses present intermediate characteristics between aquatic and terrestrial ecosystems responses. Inputting a moderate amount of dead P. oceanica leaves into experimental mesocosms had a non-negligible impact and rapidly affected the macrofauna community. Specialist detritivores species were boosted while herbivore/detritivore species dramatically decreased. Predators also showed a modest but significant density increase, demonstrating the fast propagation of the pulse response throughout the entire community and through several trophic levels. Strict hypoxia-tolerant species were also only observed in the treated mesocosms, indicating the strong influence of resource pulses on physico-chemical conditions occurring inside litter accumulations
Trophic niche width, shift, and specialization of <i>Dascyllus aruanus</i> in Toliara Lagoon, Madagascar
Intrapopulation diet specializations may result from the use of different dietary items or foraging tactics by individuals within a single population. The damselfish, Dascyllus aruanus, is a highly site-attached coral reef fish living in size hierarchies among branched corals. The trophic niche width and feeding specialization of this species were explored using stable isotopes and stomach content analyses. Intra-group niche variation was mainly related to fish size. Within social groups, D. aruanus gradually shifted its foraging tactics according to size; smaller fish fed on benthic prey such as isopods and copepods, and the larger fish foraged in the water column on planktonic copepods and larger-sized prey. Group density was found to explain some variation in trophic niche characteristics; greater specialization on prey size was observed in the colony having the highest density. All members of the largest colony foraged more frequently in the water column. Knowing that planktonic copepods are more energy-rich than benthic ones, a positive group-size effect facilitating access to preferred prey is suggested. Group size and group density effects on trophic specialization did not have any impact on body condition, suggesting that the behavioral plasticity of D. aruanus in its foraging strategies permits compensation for the maintenance of body conditions
An ecological study of <i>Electra posidoniae</i> Gautier, 1954 (Cheilostomata, Anasca), a bryozoan epiphyte found solely on the seagrass <i>Posidonia oceanica</i> (L.) Delile, 1813
The bryozoan Electra posidoniae Gautier is found solely on the leaves of the Neptune grass Posidonia oceanica (L.) Delile, dominating the leaf epifauna of this seagrass. Epiphytes of marine angiosperms (or seagrasses) often play an important role in ecosystem functioning, for example as food web suppliers. As dysfunction of the epiphytic component is often implied in human induced seagrass decline, it is important to understand the dynamics and life traits of this community in pristine areas. This study involved the monthly assessment of colonization dynamics, biomass seasonality, and diet composition through measurements of stable isotopes, in E. posidoniae at a depth of 10 m in the Revellata Bay (Corsica, Mediterranean Sea). Ancestrulae (i.e. colony founders) appeared towards the end of winter and were very selective in their settlement position along the leaves of P. oceanica. A maximum of 100,000 colonies per square meter was recorded. Colonies of E. posidoniae dominated the epiphytic community biomass in early spring, but were overtaken by epiphytic algae in June. Food shortage could be involved in this reduction in dominance. Although stable isotope ratios of C, N and S showed that this suspension feeder mainly relies on the water column for its food, other food sources such as re-suspended epiphytic diatoms could be important in late spring (i.e. after the phytoplanktonic bloom). Additionally, a contribution of seagrass phytodetritus to the diet of this species cannot be excluded. The species was almost absent in winter, raising the question of its recruitment in spring. This study confirms the quantitative importance of this species in the seagrass meadow and explores its role in the relationship between the water column and this seagrass ecosystem
Mismatch between shape changes and ecological shifts during the post-settlement growth of the surgeonfish, <i>Acanthurus triostegus</i>
Background: Many coral reef fishes undergo habitat and diet shifts during ontogeny. However, studies focusing on the physiological and morphological adaptations that may prepare them for these transitions are relatively scarce. Here, we explored the body shape variation related to ontogenetic shifts in the ecology of the surgeonfish Acanthurus triostegus (Acanthuridae) from new settler to adult stages at Moorea Island (French Polynesia). Specifically, we tested the relationship between diet and habitat shifts and changes in overall body shape during the ontogeny of A. triostegus using a combination of geometric morphometric methods, stomach contents and stable isotope analysis.Results: After reef settlement, stable isotope composition of carbon and nitrogen revealed a change from a zooplanktivorous to a benthic algae diet. The large amount of algae (> 75% of stomach contents) found in the digestive tract of small juveniles (25–30 mm SL) suggested the diet shift is rapid. The post-settlement growth of A. triostegus is highly allometric. The allometric shape changes mainly concern cephalic and pectoral regions. The head becomes shorter and more ventrally oriented during growth. Morphological changes are directly related to the diet shift given that a small mouth ventrally oriented is particularly suited for grazing activities at the adult stage. The pectoral fin is more anteriorely and vertically positioned and its basis is larger in adults than in juveniles. This shape variation had implications for swimming performance, manoeuvrability, turning ability and is related to habitat shift. Acanthurus triostegus achieves its main transformation of body shape to an adult-like form at size of 35–40 mm SL. Conclusion: Most of the shape changes occurred after the reef colonization but before the transition between juvenile habitat (fringing reef) and adult habitat (barrier reef). A large amount of allometric variation was observed after diet shift from zooplankton to benthic algae. Diet shift could act as an environmental factor favouring or inducing morphological changes. On the other hand, the main shape changes have to be achieved before the recruitment to adult populations and start negotiating the biophysical challenges of locomotion and feeding in wave- and current-swept outer reef habitat
Trophic ecology of the seagrass-inhabiting footballer demoiselle <i>Chrysiptera annulata</i> (Peters, 1855); comparison with three other reef-associated damselfishes
Many damselfishes (Pomacentridae) are herbivorous or omnivorous with an important contribution from different kinds of algae in their diet. They display different levels of territoriality and farming behavior, from almost non territorial to monoculture farmers. In addition, a few species inhabit seagrass meadows but, presently, none can be considered as seagrass-eating specialists. The footballer demoiselle, Chrysiptera annulata, is found in the seagrass meadows on the reef flat of the Great Reef of Toliara (Madagascar, Mozambique Channel). In the light of this unusual habitat for a pomacentrid, this study aimed to answer three questions: 1) What is the diet of C. annulata? 2) Do the resources supporting this diet include seagrass? 3) Does its trophic niche overlap those of other sympatric damselfishes (Pomacentrus trilineatus, Chrysiptera unimaculata and Plectroglyphidodon lacrymatus) living in close association with macrophytes or eating algae? Stomach content examination and stable isotope analysis showed that the footballer demoiselle is not a seagrass consumer but is an omnivorous/herbivorous species heavily relying on algal resources and small invertebrates. SIAR, a stable isotope mixing model, indicated it assimilated large amounts of turf algae, and various benthic or planktonic invertebrates in lower proportions. SIBER metrics revealed that the isotopic niche of the footballer demoiselle partly overlaps that of its congener, C. unimaculata, but not those of P. trilineatusand P. lacrymatus. Trophic strategies of C. annulata differed both from farming species such as P. lacrymatus and from less territorial herbivores such as P. trilineatus. Its seagrass meadow habitat on the Great Reef of Toliara allows the conquest of an unusual habitat for damselfishes and could limit competition with C. unimaculata, a species displaying the same territorial behavior and the same isotopic niche but living on the reef itself
Increased sea ice cover disrupts food web structure in coastal Antarctica
Antarctica currently undergoes strong and contrasted impacts linked with climate change. While the West Antarctic Peninsula is one of the most rapidly warming regions in the world, resulting in sea ice cover decrease, the sea ice cover of East Antarctica unexpectedly tends to increase, possibly in relation with changes in atmospheric circulation. Sea ice is a major environmental driver in Antarctica, and changes in sea ice cover are likely to influence benthic food web structure through several processes (modifications of benthic-pelagic coupling, disruption of benthic production and/or modifications of benthic community structure and therefore resource availability for benthic consumers).
To date, regions where sea ice cover is decreasing have received more attention than regions where it is increasing. Here, on the other hand, we studied shallow (0-20 m) benthic food web structure on the coasts of Petrels Island (Adélie Land, East Antarctica) during an event of unusually high spatial and temporal (two successive austral summers without seasonal break-up) sea ice cover. Using time-tested integrative trophic markers (stable isotope ratios of carbon, nitrogen and sulfur) and state-of-the-art data analysis tools (bayesian ecological models), we studied the structure of the food web associated to benthic macroinvertebrates communities. In total, 28 macroinvertebrate taxa spanning most present animal groups (sponges, sea anemones, nemerteans, nematods, sipunculids, sessile and mobile polychaetes, gastropods, bivalves, pycnogonids, crustaceans, sea stars, sea urchins, brittle stars and sea cucumbers) and functional guilds (grazers, deposit feeders, filter feeders, predators, scavengers) were investigated.
Our results indicate that the absence of seasonal sea ice breakup deeply influences coastal benthic food webs in Antarctica. We recorded marked differences from literature data, both in terms of horizontal (i.e. primary producers and resources supporting animal populations) and vertical (i.e. trophic level of the studied consumers) structure of the food web. Overall, sympagic (sea-ice associated) algae dominated the diet of many important consumers, and the trophic levels of invertebrates were low, suggesting omnivore consumers relied less on predation and/or scavenging than in normal environmental conditions. Surprisingly, few animals seemed to feed on the extremely abundant benthic biofilm, whose exceptional development was also presumably linked with the peculiar sea ice conditions. Interpretation of data was complicated by the peculiar ecophysiological features of Antarctic invertebrates, whose very low metabolic rates could be associated to low tissue turnover. However, comparison of data obtained in the austral summers of 2013-2014 (first year without seasonal breakup) and 2014-2015 (second year without seasonal breakup) clearly showed that the observed trends were linked with actual temporal changes in invertebrate feeding habits rather than with other potential ecological drivers.
Our results provide insights about how Antarctic benthic consumers, which have evolved in an extremely stable environment, might adapt their feeding habits in response to sudden man-driven changes in environmental conditions and trophic resource availability. They also show that local and/or global trends of sea ice increase in Antarctica could cause strong changes in food web structure and therefore impact zoobenthic communities. This reinforces the view that, no matter their overall direction (i.e. increase or decrease), fluctuations in sea ice cover are likely to influence Antarctic benthic ecosystems' structure and functioning.vERSO (Ecosystem Resilience in the Southern Ocean, BR/132/A1/vERSO
- …