95 research outputs found

    An alternative heavy Higgs mass limit

    Full text link
    After commenting on the present value of the Higgs particle mass from radiative corrections, we explore the phenomenological implications of an alternative, non-perturbative renormalization of the scalar sector where the mass of the Higgs particle does not represent a measure of observable interactions at the Higgs mass scale. In this approach the Higgs particle could be very heavy, even heavier than 1 TeV, and remain nevertheless a relatively narrow resonance.Comment: 17 pages. Version accepted for publication in Journal of Physics

    Electroweak parameters of the Z° resonance and the standard model

    Get PDF
    The four LEP experiments have each performed precision measurements of Z ° parameters. A method is described for combin- ing the results of the four experiments, which takes into account the experimental and theoretical systematic errors and their correlations. We apply this method to the 1989 and 1990 LEP data, corresponding to approximately 650 000 Z ° decays into hadrons and charged leptons, to obtain precision values for the Z ° parameters. We use these results to test the standard model and to constrain its parameters.Facultad de Ciencias Exacta

    Electroweak parameters of the Z° resonance and the standard model

    Get PDF
    The four LEP experiments have each performed precision measurements of Z ° parameters. A method is described for combin- ing the results of the four experiments, which takes into account the experimental and theoretical systematic errors and their correlations. We apply this method to the 1989 and 1990 LEP data, corresponding to approximately 650 000 Z ° decays into hadrons and charged leptons, to obtain precision values for the Z ° parameters. We use these results to test the standard model and to constrain its parameters.Facultad de Ciencias Exacta

    Associated single photons and doubly charged scalar at linear e-e- colliders

    Get PDF
    Doubly charged scalars, predicted in many models having exotic Higgs representations, can in general have lepton-number violating (LFV) couplings. We show that by using an associated monoenergetic final state photon seen at a future linear e-e- collider, we can have a clear and distinct signature for a doubly-charged resonance. The strength of the Delta L=2 coupling can also be probed quite effectively as a function of the recoil mass of the doubly-charged scalar.Comment: Reference adde

    Hadronic Contributions to the Photon Vacuum Polarization and their Role in Precision Physics

    Full text link
    I review recent evaluations of the hadronic contribution to the shift in the fine structure constant and to the anomalous magnetic moment of the muon. Substantial progress in a precise determination of these important observables is a consequence of substantially improved total cross section measurement by the CMD-2 and BES II collaborations and an improved theoretical understanding. Prospects for further possible progress is discussed.Comment: 17 pages 7 figures 2 tables, update: incl. CMD-2 data, reference

    Phenomenological Constraints on Extended Quark Sectors

    Get PDF
    We study the flavor physics in two extensions of the quark sector of the Standard Model (SM): a four generation model and a model with a single vector--like down--type quark (VDQ). In our analysis we take into account the experimental constraints from tree--level charged current processes, rare Kaon decay processes, rare B decay processes, the Z→bbˉZ\to b \bar{b} decay, KK, BB and DD mass differences, and the CP violating parameters \frac \epsilon^\prime}{\epsilon}, ϵK\epsilon_K and aψKa_{\psi K}. All the constraints are taken at two sigma. We find bounds on parameters which can be used to represent the New Physics contributions in these models (λt′bd\lambda_{t^ \prime}^{bd}, λt′bs\lambda_{t^ \prime}^{bs} and λt′sd\lambda_{t^ \prime}^{sd} in the four--generation model, and UbdU_{bd}, UbsU_{bs} and UsdU_{sd} in the VDQ model) due to all the above constraints. In both models the predicted ranges for aSLa_{SL} (the CP asymmetry in semi-leptonic decays), ΔMD\Delta M_D, B(K+→π+ννˉ)B(K^+\to\pi^+ \nu \bar{\nu}), B(KL→π0ννˉ)B(K_L\to\pi^0 \nu \bar{\nu}) and B(KL→μμˉ)SDB(K_L\to \mu \bar{\mu})_{SD} can be significantly higher than the predictions of the SM, while the allowed ranges for aψKa_{\psi K} and for ΔmBS\Delta m_{B_S} are consistent with the SM prediction.Comment: 22 pages, 5 figures (v3: added a reference, updated a reference, added missing units

    SUSY Magnetic Moments Sum Rules and Supersymmetry Breaking

    Full text link
    It was recently shown that unbroken N=1 Susy relates, in a model independent way, the magnetic transitions between states of different spin within a given charged massive supermultiplet. We verify explicitly these sum rules for a vector multiplet in the case of massless and massive fermions. The purpose of this analysis is to provide the ground for the broken susy case. We study the modifications of these results when an explicit soft Susy breaking realized through a universal mass for all scalars is present. As a by-product we provide a computation of the g−2g-2 of the WW boson in the standard model which corrects previous evaluations in the literature.Comment: 16+5 pages, Latex,(feynman.tex to print the figures), DFPD 94/TH/2

    Direct Higgs production and jet veto at the Tevatron and the LHC in NNLO QCD

    Get PDF
    We consider Higgs boson production through gluon--gluon fusion in hadron collisions, when a veto is applied on the transverse momenta of the accompanying hard jets. We compute the QCD radiative corrections to this process at NLO and NNLO. The NLO calculation is complete. The NNLO calculation uses the recently evaluated NNLO soft and virtual QCD contributions to the inclusive cross section. We find that the jet veto reduces the impact of the NLO and NNLO contributions, the reduction being more sizeable at the LHC than at the Tevatron.Comment: 22 pages, 12 postscript figure
    • …
    corecore