6 research outputs found

    Canal lock variable speed hydropower turbine design and control

    Get PDF
    The design of a novel submerged hydraulic turbine for producing electricity by converting the available hydropower on canal locks during raising and lowering ships, but with the minimum overall impact on the facility, is being considered. The hydraulic head in such applications is low (few meters) and varies over time (from its maximum value down to zero) resulting in a low potential conversion of hydraulic head in electrical energy. The study involves the modification of the hydraulic transient system, the design and performance estimation of a hydraulic turbine. Based on the performance curves, a permanent magnet Vernier generator is designed. The models of hydraulic turbine and generator are added to the system model and simulations results of the whole system are presented.Region Hauts de Franc

    Experimental validation of an ultrasonic flowmeter for unsteady flows

    Get PDF
    An ultrasonic flowmeter was developed for further applications in cryogenic conditions and for measuring flow rate fluctuations in the range of 0 to 70 Hz. The prototype was installed in a flow test rig, and was validated experimentally both in steady and unsteady water flow conditions. A Coriolis flowmeter was used for the calibration under steady state conditions, whereas in the unsteady case the validation was done simultaneously against two methods: particle image velocimetry (PIV), and with pressure transducers installed flush on the wall of the pipe. The results show that the developed flowmeter and the proposed methodology can accurately measure the frequency and amplitude of unsteady fluctuations in the experimental range of 0–9 l s−1 of the mean main flow rate and 0–70 Hz of the imposed disturbancesArianeGrou

    Quantitative Design of a High Performance Permanent Magnet Vernier Generator

    Get PDF
    Permanent-magnet vernier machines are becoming more and more attractive due to their high torque density and low-speed operating capabilities. This paper investigates the effects of the magnet thickness, magnet pole arc ratio, and slot open ratio on the torque capacity. An analytical model is first presented. It is validated by comparing the results with the finite-element analysis (FEA) under the same hypothesis. A mono-objective optimization is then conducted on the basis of the analytical model coupled to genetic algorithm to reach the optimal values yielding the highest value of the torque. Finally, the influence of nonlinear magnetic material behavior on the optimal design is investigated through nonlinear FEA. The results are presented and discussedRegion Hauts de France EDF VN

    New insights into tracer propagation in partially saturated porous media

    No full text
    This work deals with the influence of partial saturation on the transport process of a passive tracer. Transport experiments were done in a water-wet glass micromodel combined with specific optical techniques. Full water saturation was achieved by injecting initially the background solution and then the tracer, whereas for the partial saturation conditions, the micromodel was initially saturated with oil, and then sequential the background solution and the tracer were injected at the same flow rate. We have shown that in the investigated range of water saturations it exists a transition in the oil ganglia structure and size. For high water saturations oil ganglia have one or two pores in size, however for lower water saturations they comprise an important number of pores. Transport strongly depends on the size distribution of the oil ganglia as they create large percolating paths and stagnant zones. We also showed the existence of two different types of stagnant zones: zones accessible by diffusion into pores and zones only accessible by spatially limited diffusion in films. The major advantage of using glass micromodels lies in the fact that dispersion coefficients can be computed from concentrations averaged over the pore space or from concentrations at the outlet and simultaneously from spatial concentration profiles. Curves were fitted using the Advection–Dispersion Equation (ADE) with adequate boundary conditions. The fitting quality of the temporal evolution of the average and outlet concentration was very good. However, fitting of the concentration profiles could only be done for the higher water saturations. This is due to the fact that the Representative Elementary Volume (REV) of lower water saturations is larger than the micromodel. The results show that fitting the breakthrough curve in order to determine the dispersion coefficient in a partially saturated porous medium might be misleading. Indeed, when fitting the breakthrough curves we were able to compute a dispersion coefficient even in the case where the REV of the water saturation is larger than the micromodel. Consequently, the knowledge of the local concentration profiles as a function of time is necessary as it provides an additional information on the spatio-temporal behavior of the transport process and therefor a supplementary constraint of the fitting procedure. Finally, we observed a time dependent dispersion coefficient in the regime where oil ganglia comprise several pores. This fact might be attributed to the non-Gaussian nature of the transport

    Numerical design of a Knudsen pump with curved channels operating in the slip flow regime

    No full text
    International audienc
    corecore