987 research outputs found

    Painting of human chromosomes with probes generated from hybrid cell lines by PCR with Alu and L1 primers

    Get PDF
    Specific amplification of human sequences of up to several kb length has recently been accomplished in man-hamster and man-mouse somatic hybrid cell DNA by IRS-PCR (interspersed repetitive sequence — polymerase chain reaction). This approach is based on oligonucleotide primers that anneal specifically to human Alu- or L1-sequences and allows the amplification of any human sequences located between adequately spaced, inverted Alu- or L1-blocks. Here, we demonstrate that probe pools generated from two somatic hybrid cell lines by Alu- and L1-PCR can be used for chromosome painting in normal human lymphocyte metaphase spreads by chromosomal in situ suppression (CISS-) hybridization. The painted chromosomes and chromosome subregions directly represent the content of normal and deleted human chromosomes in the two somatic hybrid cell lines. The combination of IRS-PCR and CISS-hybridization will facilitate and improve the cytogenetic analysis of somatic hybrid cell panels, in particular, in cases where structurally aberrant human chromosomes or human chromosome segments involved in interspecies translocations cannot be unequivocally identified by classical banding techniques. Moreover, this new approach will help to generate probe pools for the specific delineation of human chromosome subregions for use in cytogenetic diagnostics and research without the necessity of cloning

    {DeepBlueR}: {L}arge-scale Epigenomic Analysis in {R}

    Get PDF

    {BiQ} Analyzer {HiMod}: An Interactive Software Tool for High-throughput Locus-specific Analysis of 5-Methylcytosine and its Oxidized Derivatives

    Get PDF
    Recent data suggest important biological roles for oxidative modifications of methylated cytosines, specifically hydroxymethylation, formylation and carboxylation. Several assays are now available for profiling these DNA modifications genome-wide as well as in targeted, locus-specific settings. Here we present BiQ Analyzer HiMod, a user-friendly software tool for sequence alignment, quality control and initial analysis of locus-specific DNA modification data. The software supports four different assay types, and it leads the user from raw sequence reads to DNA modification statistics and publication-quality plots. BiQ Analyzer HiMod combines well-established graphical user interface of its predecessor tool, BiQ Analyzer HT, with new and extended analysis modes. BiQ Analyzer HiMod also includes updates of the analysis workspace, an intuitive interface, a custom vector graphics engine and support of additional input and output data formats. The tool is freely available as a stand-alone installation package from http://biq-analyzer-himod.bioinf.mpi-inf.mpg.de/

    The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary

    Get PDF
    Fluorescencein situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescencein situ hybridization and comparative mapping of the chromosomes of human, great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, Pongo pygmaeus) and Old World monkeys (Macaca fuscata andCercopithecus aethiops). Inversions were found in the pericentric region of the primate chromosome 2p homologs in great apes, and the hybridization pattern demonstrates the known phylogenetically derived telomere fusion in the line that leads to human chromosome 2. The hybridization of the 2q microlibrary to chromosomes of Old World monkeys gave a different pattern from that in the gorilla and the orang-utan, but a pattern similar to that of chimpanzees. This suggests convergence of chromosomal rearrangements in different phylogenetic lines

    An algebra for feature-oriented software development

    Get PDF
    Feature-Oriented Software Development (FOSD) provides a multitude of formalisms, methods, languages, and tools for building variable, customizable, and extensible software. Along different lines of research different ideas of what a feature is have been developed. Although the existing approaches have similar goals, their representations and formalizations have not been integrated so far into a common framework. We present a feature algebra as a foundation of FOSD. The algebra captures the key ideas and provides a common ground for current and future research in this field, in which also alternative options can be explored

    {DeepBlue} Epigenomic Data Server: {P}rogrammatic Data Retrieval and Analysis of Epigenome Region Sets

    No full text
    Large amounts of epigenomic data are generated under the umbrella of the International Human Epigenome Consortium, which aims to establish 1000 reference epigenomes within the next few years. These data have the potential to unravel the complexity of epigenomic regulation. However, their effective use is hindered by the lack of flexible and easy-to-use methods for data retrieval. Extracting region sets of interest is a cumbersome task that involves several manual steps: identifying the relevant experiments, downloading the corresponding data files and filtering the region sets of interest. Here we present the DeepBlue Epigenomic Data Server, which streamlines epigenomic data analysis as well as software development. DeepBlue provides a comprehensive programmatic interface for finding, selecting, filtering, summarizing and downloading region sets. It contains data from four major epigenome projects, namely ENCODE, ROADMAP, BLUEPRINT and DEEP. DeepBlue comes with a user manual, examples and a well-documented application programming interface (API). The latter is accessed via the XML-RPC protocol supported by many programming languages. To demonstrate usage of the API and to enable convenient data retrieval for non-programmers, we offer an optional web interface. DeepBlue can be openly accessed at http://deepblue.mpi-inf.mpg.de

    A strategy for the characterization of minute chromosome rearrangements using multiple color fluorescence in situ hybridization with chromosome-specific DNA libraries and YAC clones

    Get PDF
    The identification of marker chromosomes in clinical and tumor cytogenetics by chromosome banding analysis can create problems. In this study, we present a strategy to define minute chromosomal rearrangements by multicolor fluorescence in situ hybridization (FISH) with whole chromosome painting probes derived from chromosome-specific DNA libraries and Alu-polymerase chain reaction (PCR) products of various region-specific yeast artificial chromosome (YAC) clones. To demonstrate the usefulness of this strategy for the characterization of chromosome rearrangements unidentifiable by banding techniques, an 8p+ marker chromosome with two extra bands present in the karyotype of a child with multiple anomalies, malformations, and severe mental retardation was investigated. A series of seven-color FISH experiments with sets of fluorochrome-labeled DNA library probes from flow-sorted chromosomes demonstrated that the additional segment on 8p+ was derived from chromosome 6. For a more detailed characterization of the marker chromosome, three-color FISH experiments with library probes specific to chromosomes 6 and 8 were performed in combination with newly established telomeric and subtelomeric YAC clones from 6q25, 6p23, and 8p23. These experiments demonstrated a trisomy 6pter6p22 and a monosomy 8pter8p23 in the patient. The present limitations for a broad application of this strategy and its possible improvements are discusse

    Comparative chromosome band mapping in primates byin situ suppression hybridization of band specific DNA microlibraries

    Get PDF
    A DNA-library established from microdissected bands 8q23 to 8q24.1 of normal human chromosomes 8 (Lüdecke et al., 1989) was used as a probe for chromosomal in situ suppression (CISS-) hybridization to metaphase chromosomes of man and primates including Hylobates lar and Macaca fuscata. Comparative band mapping as first applied in this study shows the specific visualization of a single subchromosomal region in all three species and thus demonstrates that synteny of the bulk sequences of a specific human chromosome subregion has been conserved for more than 20 million years

    Dissolution of Iron During Biochemical Leaching of Natural Zeolite

    Get PDF
    Natural zeolite, including clinoptilolite, often contains iron and manganese which decrease the whiteness of this sharp angular material.The biological treatment of zeolite enables its use as an substitute for tripolyphosphates in wash powders which have to comply with strict requirements as far as whiteness is concerned and rounded off grain content. Insoluble Fe3+ and Mn4+ in the zeolite could be reduced to soluble Fe2+ and Mn2+ by silicate bacteria of Bacillus spp. These metals were efficiently removed from zeolite as documented by Fe2O3 decrease (from 1.37% to 1.08%) and MnO decrease (from 0.022% to 0.005%) after bioleaching. The whiteness of zeolite was increased by 8%. The leaching effect, observed by scanning electron microscopy, caused also a chamfer of the edges of sharp angular grains. Despite the enrichment by fine-grained fraction, the decrease of the surface area of clinoptilolite grains from the value 24.94 m2/g to value 22.53 m2/g was observed. This fact confirms the activity of bacteria of Bacillus genus in the edge corrosion of mineral grains.Removal of iron and manganese as well as of sharp edges together with the whiteness increase would provide a product suitable for industrial applications
    • …
    corecore