9 research outputs found
Recommended from our members
Efficient in vitro generation of adult multipotent cells from mobilized peripheral blood CD133+ cells
To generate non-haematopoietic tissues from mobilized haematopoietic CD133(+) stem cells.
Mobilized peripheral blood CD133(+) cells from adult healthy donors were used. In vitro ability of highly enriched CD133(+) cells from mobilized peripheral blood to generate multipotent cells, and their potential to give rise to cells with characteristics of neuroectoderm, endoderm and mesoderm layers was investigated.
We found that a recently identified population of CD45(+) adherent cells generated in vitro after culture of highly purified CD133(+) cells for 3-5 weeks with Flt3/Flk2 ligand and interleukin-6 can, in presence of the appropriate microenvironmental cues, differentiate into neural progenitor-like cells (NPLCs), hepatocyte-like cells and skeletal muscle-like cells. We have termed them to be adult multipotent haematopoietic cells (AMHCs). AMHC-derived NPLCs expressed morphological, phenotypic and molecular markers associated with primary neural progenitor cells. They can differentiate into astrocyte-like cells, neuronal-like cells and oligodendrocyte-like cells. Moreover, AMHC-derived NPLCs produced 3,4-dihydrophenylalanine and dopamine and expressed voltage-activated ion channels, suggesting their functional maturation. In addition, AMHC-derived hepatocyte-like cells and skeletal muscle-like cells, showed typical morphological features and expressed primary tissue-associated proteins.
Our data demonstrate that AMHCs may therefore serve as a novel source of adult multipotent cells for autologous replacement cell therapies
Murine CD8 lymphocyte expansion in vitro by artificial antigen-presenting cells expressing CD137L (4-1BBL) is superior to CD28, and CD137L expressed on neuroblastoma expands CD8 tumour-reactive effector cells in vivo
The ability to expand tumour-infiltrating lymphocytes in vitro has been greatly enhanced by the use of antigen-independent mechanisms of immune cell costimulation. We have produced human, using the K562 cell line, and murine, using YAC-1 cells, artificial antigen presenting cells (aAPC) and demonstrate that these cell types stimulate murine lymphocyte populations in distinct ways. Using aAPC that have been transfected with CD137L (4-1BBL) and CD32 (FcRγII), as a means to bind anti-CD3 and anti-CD28 antibody, we found that CD4 cells preferentially expanded in vitro with K562 aAPC, while CD8 cells expanded with both K562 and YAC-1 aAPC. Co-stimulation mediated by CD137L on aAPC was superior to that mediated by anti-CD28 antibody. This was seen in both long and short-term expansion assays, and by the rapid induction of a CD8(+) DX5(+) population. DX5 serves, under these in vitro conditions, as a general marker for lymphocyte activation. In vivo, the superiority of CD137L was demonstrated by the induction of T helper 1 effectors seen in freshly isolated splenocytes from mice immunized with CD137L-expressing neuroblastoma tumour vaccines. The ability to stimulate a strong CD8 CTL response in vivo correlated with the induction of a DX5(+) cell population in splenocytes with a memory-effector phenotype. The presence of this unique DX5(+) cell population, phenotypically distinct with regards to CD69 and CD62L expression from DX5(+) cells induced by aAPC in vitro, may be associated with the ability of CD137L to induce strong anti-tumour immunity
Functional and Selective Targeting of Adenovirus to High-Affinity Fcγ Receptor I-Positive Cells by Using a Bispecific Hybrid Adapter
Adenovirus (Ad) efficiently delivers its DNA genome into a variety of cells and tissues, provided that these cells express appropriate receptors, including the coxsackie-adenovirus receptor (CAR), which binds to the terminal knob domain of the viral capsid protein fiber. To render CAR-negative cells susceptible to Ad infection, we have produced a bispecific hybrid adapter protein consisting of the amino-terminal extracellular domain of the human CAR protein (CARex) and the Fc region of the human immunoglobulin G1 protein, comprising the hinge and the CH2 and CH3 regions. CARex-Fc was purified from COS7 cell supernatants and mixed with Ad particles, thus blocking Ad infection of CAR-positive but Fc receptor-negative cells. The functionality of the CARex domain was further confirmed by successful immunization of mice with CARex-Fc followed by selection of a monoclonal anti-human CAR antibody (E1-1), which blocked Ad infection of CAR-positive cells. When mixed with Ad expressing eGFP, CARex-Fc mediated an up to 250-fold increase of transgene expression in CAR-negative human monocytic cell lines expressing the high-affinity Fcγ receptor I (CD64) but not in cells expressing the low-affinity Fcγ receptor II (CD32) or III (CD16). These results open new perspectives for Ad-mediated cancer cell vaccination, including the treatment of acute myeloid leukemia