611 research outputs found

    No-compressing of quantum phase information

    Full text link
    We raise a general question of quantum information theory whether the quantum phase information can be compressed and retrieved. A general qubit contains both amplitude and phase information, while an equatorial qubit contains only a phase information. We study whether it is possible to compress the phase information of n equatorial qubits into m general qubits with m being less than n, and still those information can be retrieved perfectly. We prove that this process is not allowed by quantum mechanics.Comment: 4 pages, 1 figur

    Radial Angular Momentum Transfer and Magnetic Barrier for Short-Type Gamma-Ray Burst Central Engine Activity

    Get PDF
    Soft extended emission (EE) following initial hard spikes up to 100 seconds was observed with {\em Swift}/BAT for about half of short-type gamma-ray bursts (SGRBs). This challenges the conversional central engine models of SGRBs, i.e., compact star merger models. In the framework of the black hole-neutron star merger models, we study the roles of the radial angular momentum transfer in the disk and the magnetic barrier around the black hole for the activity of SGRB central engines. We show that the radial angular momentum transfer may significantly prolong the lifetime of the accretion process and multiple episodes may be switched by the magnetic barrier. Our numerical calculations based on the models of the neutrino-dominated accretion flows suggest that the disk mass is critical for producing the observed EE. In case of the mass being ∼0.8M⊙\sim 0.8M_{\odot}, our model can reproduce the observed timescale and luminosity of both the main and EE episodes in a reasonable parameter set. The predicted luminosity of the EE component is lower than the observed EE with about one order of magnitude and the timescale is shorter than 20 seconds if the disk mass being ∼0.2M⊙\sim 0.2M_{\odot}. {\em Swift}/BAT-like instruments may be not sensitive enough to detect the EE component in this case. We argue that the EE component would be a probe for merger process and disk formation for compact star mergers.Comment: 9 pages, 3 figures, accepted for publication in Ap

    Arrayed van der Waals Vertical Heterostructures based on 2D GaSe Grown by Molecular Beam Epitaxy

    Full text link
    Vertically stacking two dimensional (2D) materials can enable the design of novel electronic and optoelectronic devices and realize complex functionality. However, the fabrication of such artificial heterostructures in wafer scale with an atomically-sharp interface poses an unprecedented challenge. Here, we demonstrate a convenient and controllable approach for the production of wafer-scale 2D GaSe thin films by molecular beam epitaxy. In-situ reflection high-energy electron diffraction oscillations and Raman spectroscopy reveal a layer-by-layer van der Waals epitaxial growth mode. Highly-efficient photodetector arrays were fabricated based on few-layer GaSe on Si. These photodiodes show steady rectifying characteristics and a relatively high external quantum efficiency of 23.6%. The resultant photoresponse is super-fast and robust with a response time of 60 us. Importantly, the device shows no sign of degradation after 1 million cycles of operation. Our study establishes a new approach to produce controllable, robust and large-area 2D heterostructures and presents a crucial step for further practical applications

    General Quantum Key Distribution in Higher Dimension

    Full text link
    We study a general quantum key distribution protocol in higher dimension. In this protocol, quantum states in arbitrary g+1g+1 (1≤g≤d1\le g\le d) out of all d+1d+1 mutually unbiased bases in a d-dimensional system can be used for the key encoding. This provides a natural generalization of the quantum key distribution in higher dimension and recovers the previously known results for g=1g=1 and dd. In our investigation, we study Eve's attack by two slightly different approaches. One is considering the optimal cloner for Eve, and the other, defined as the optimal attack, is maximizing Eve's information. We derive results for both approaches and show the deviation of the optimal cloner from the optimal attack. With our systematic investigation of the quantum key distribution protocols in higher dimension, one may balance the security gain and the implementation cost by changing the number of bases in the key encoding. As a side product, we also prove the equivalency between the optimal phase covariant quantum cloning machine and the optimal cloner for the g=d−1g=d-1 quantum key distribution
    • …
    corecore