611 research outputs found
No-compressing of quantum phase information
We raise a general question of quantum information theory whether the quantum
phase information can be compressed and retrieved. A general qubit contains
both amplitude and phase information, while an equatorial qubit contains only a
phase information. We study whether it is possible to compress the phase
information of n equatorial qubits into m general qubits with m being less than
n, and still those information can be retrieved perfectly. We prove that this
process is not allowed by quantum mechanics.Comment: 4 pages, 1 figur
Radial Angular Momentum Transfer and Magnetic Barrier for Short-Type Gamma-Ray Burst Central Engine Activity
Soft extended emission (EE) following initial hard spikes up to 100 seconds
was observed with {\em Swift}/BAT for about half of short-type gamma-ray bursts
(SGRBs). This challenges the conversional central engine models of SGRBs, i.e.,
compact star merger models. In the framework of the black hole-neutron star
merger models, we study the roles of the radial angular momentum transfer in
the disk and the magnetic barrier around the black hole for the activity of
SGRB central engines. We show that the radial angular momentum transfer may
significantly prolong the lifetime of the accretion process and multiple
episodes may be switched by the magnetic barrier. Our numerical calculations
based on the models of the neutrino-dominated accretion flows suggest that the
disk mass is critical for producing the observed EE. In case of the mass being
, our model can reproduce the observed timescale and
luminosity of both the main and EE episodes in a reasonable parameter set. The
predicted luminosity of the EE component is lower than the observed EE with
about one order of magnitude and the timescale is shorter than 20 seconds if
the disk mass being . {\em Swift}/BAT-like instruments may
be not sensitive enough to detect the EE component in this case. We argue that
the EE component would be a probe for merger process and disk formation for
compact star mergers.Comment: 9 pages, 3 figures, accepted for publication in Ap
Arrayed van der Waals Vertical Heterostructures based on 2D GaSe Grown by Molecular Beam Epitaxy
Vertically stacking two dimensional (2D) materials can enable the design of
novel electronic and optoelectronic devices and realize complex functionality.
However, the fabrication of such artificial heterostructures in wafer scale
with an atomically-sharp interface poses an unprecedented challenge. Here, we
demonstrate a convenient and controllable approach for the production of
wafer-scale 2D GaSe thin films by molecular beam epitaxy. In-situ reflection
high-energy electron diffraction oscillations and Raman spectroscopy reveal a
layer-by-layer van der Waals epitaxial growth mode. Highly-efficient
photodetector arrays were fabricated based on few-layer GaSe on Si. These
photodiodes show steady rectifying characteristics and a relatively high
external quantum efficiency of 23.6%. The resultant photoresponse is super-fast
and robust with a response time of 60 us. Importantly, the device shows no sign
of degradation after 1 million cycles of operation. Our study establishes a new
approach to produce controllable, robust and large-area 2D heterostructures and
presents a crucial step for further practical applications
General Quantum Key Distribution in Higher Dimension
We study a general quantum key distribution protocol in higher dimension. In
this protocol, quantum states in arbitrary () out of all
mutually unbiased bases in a d-dimensional system can be used for the key
encoding. This provides a natural generalization of the quantum key
distribution in higher dimension and recovers the previously known results for
and . In our investigation, we study Eve's attack by two slightly
different approaches. One is considering the optimal cloner for Eve, and the
other, defined as the optimal attack, is maximizing Eve's information. We
derive results for both approaches and show the deviation of the optimal cloner
from the optimal attack. With our systematic investigation of the quantum key
distribution protocols in higher dimension, one may balance the security gain
and the implementation cost by changing the number of bases in the key
encoding. As a side product, we also prove the equivalency between the optimal
phase covariant quantum cloning machine and the optimal cloner for the
quantum key distribution
- …