6 research outputs found

    Slow Cortical Potential BCI Classification Using Sparse Variational Bayesian Logistic Regression with Automatic Relevance Determination

    Get PDF
    Detecting P300 slow-cortical ERPs poses a considerable challenge in signal processing due to the complex and non-stationary characteristics of a single-trial EEG signal. EEG-based neurofeedback training is a possible strategy to improve the social abilities in Autism-Spectrum Disorder (ASD) subjects. This paper presents a BCI P300 ERPs based protocol optimization used for the enhancement of joint-attention skills in ASD subjects, using a robust logistic regression with Automatic Relevance Determination based on full Variational Bayesian inference (VB-ARD). The performance of the proposed approach was investigated utilizing the IFMBE 2019 Scientific Challenge Competition dataset, which consisted of 15 ASD subjects who underwent a total of 7 BCI sessions spread over 4 months. The results showed that the proposed VB-ARD approach eliminates irrelevant channels and features effectively, producing a robust sparse model with 81.5 \ub1 12.0% accuracy in relatively short modeling computational time 19.3 \ub1 1.4 s, and it outperforms the standard regularized logistic regression in terms of accuracy and speed needed to produce the BCI model. This paper demonstrated the effectiveness of the probabilistic approach using Bayesian inference for the production of a robust BCI model. Considering the good classification accuracy over sessions and fast modeling time the proposed method could be a useful tool used for the BCI based protocol for the improvement of joint-attention ability in ASD subjects

    Across-subject offline decoding of motor imagery from MEG and EEG

    No full text
    Long calibration time hinders the feasibility of brain-computer interfaces (BCI). If other subjects' data were used for training the classifier, BCI-based neurofeedback practice could start without the initial calibration. Here, we compare methods for inter-subject decoding of left- vs. right-hand motor imagery (MI) from MEG and EEG. Six methods were tested on data involving MEG and EEG measurements of healthy participants. Inter-subject decoders were trained on subjects showing good within-subject accuracy, and tested on all subjects, including poor performers. Three methods were based on Common Spatial Patterns (CSP), and three others on logistic regression with l1 - or l2,1 -norm regularization. The decoding accuracy was evaluated using (1) MI and (2) passive movements (PM) for training, separately for MEG and EEG. With MI training, the best accuracies across subjects (mean 70.6% for MEG, 67.7% for EEG) were obtained using multi-task learning (MTL) with logistic regression and l2,1-norm regularization. MEGyielded slightly better average accuracies than EEG. With PM training, none of the inter-subject methods yielded above chance level (58.7%) accuracy. In conclusion, MTL and training with other subject's MI is efficient for inter-subject decoding of MI. Passive movements of other subjects are likely suboptimal for training the MI classifiers.Peer reviewe
    corecore