92 research outputs found

    Hsp27 anti-sense oligonucleotides sensitize the microtubular cytoskeleton of Chinese hamster ovary cells grown at low pH to 42 degrees C-induced reorganization

    Get PDF
    Chinese hamster ovary (CHO) cells maintained in vitro at pH 6.7 were used to model cells in the acidic environment of tumours. CHO cells grown at pH 6.7 develop thermotolerance during 42 degrees C heating at pH 6.7 and their cytoskeletal systems are resistant to 42 degrees C-induced perinuclear collapse. Hsp27 levels are elevated in cells grown at pH 6.7 and are further induced during 42 degrees C heating, while Hsp70 levels remain low or undetectable, suggesting that Hsp27 is responsible for some of the novel characteristics of these cells. An anti-sense oligonucleotide strategy was used to test the importance of Hsp27 by lowering heat-induced levels of the protein. The response of the microtubular cytoskeleton to heat was used as an endpoint to assess the effectiveness of the anti-sense strategy. Treatment with anti-sense oligonucleotides prevented the heat-induced increase of Hsp27 levels measured immediately following heat. Treatment with anti-sense oligonucleotides also sensitized the cytoskeleton of cells grown at low pH to heat-induced perinuclear collapse. However, cytoskeletal collapse was not evident in cells grown at pH 6.7 and treated with 4-nt mismatch oligonucleotides or in control cells maintained and heated at pH 6.7. The cytoskeleton collapsed around the nucleus in cells cultured and heated at pH 7.3. These results confirm that over-expression of Hsp27 confers heat protection to the microtubular cytoskeleton in CHO cells grown at low pH

    Bioavailability of Macro and Micronutrients Across Global Topsoils: Main Drivers and Global Change Impacts

    Get PDF
    Understanding the chemical composition of our planet\u27s crust was one of the biggest questions of the 20th century. More than 100 years later, we are still far from understanding the global patterns in the bioavailability and spatial coupling of elements in topsoils worldwide, despite their importance for the productivity and functioning of terrestrial ecosystems. Here, we measured the bioavailability and coupling of thirteen macro- and micronutrients and phytotoxic elements in topsoils (3–8 cm) from a range of terrestrial ecosystems across all continents (∼10,000 observations) and in response to global change manipulations (∼5,000 observations). For this, we incubated between 1 and 4 pairs of anionic and cationic exchange membranes per site for a mean period of 53 days. The most bioavailable elements (Ca, Mg, and K) were also amongst the most abundant in the crust. Patterns of bioavailability were biome-dependent and controlled by soil properties such as pH, organic matter content and texture, plant cover, and climate. However, global change simulations resulted in important alterations in the bioavailability of elements. Elements were highly coupled, and coupling was predictable by the atomic properties of elements, particularly mass, mass to charge ratio, and second ionization energy. Deviations from the predictable coupling-atomic mass relationship were attributed to global change and agriculture. Our work illustrates the tight links between the bioavailability and coupling of topsoil elements and environmental context, human activities, and atomic properties of elements, thus deeply enhancing our integrated understanding of the biogeochemical connections that underlie the productivity and functioning of terrestrial ecosystems in a changing world
    corecore