1,977 research outputs found

    Remodeling by fibroblasts alters the rate-dependent mechanical properties of collagen

    Get PDF
    The ways that fibroblasts remodel their environment are central to wound healing, development of musculoskeletal tissues, and progression of pathologies such as fibrosis. However, the changes that fibroblasts make to the material around them and the mechanical consequences of these changes have proven difficult to quantify, especially in realistic, viscoelastic three-dimensional culture environments, leaving a critical need for quantitative data. Here, we observed the mechanisms and quantified the mechanical effects of fibroblast remodeling in engineered tissue constructs (ETCs) comprised of reconstituted rat tail (type I) collagen and human fibroblast cells. To study the effects of remodeling on tissue mechanics, stress-relaxation tests were performed on ETCs cultured for 24, 48, and 72 h. ETCs were treated with deoxycholate and tested again to assess the ECM response. Viscoelastic relaxation spectra were obtained using the generalized Maxwell model. Cells exhibited viscoelastic damping at two finite time constants over which the ECM showed little damping, approximately 0.2 s and 10-30 s. Different finite time constants in the range of 1-7000 s were attributed to ECM relaxation. Cells remodeled the ECM to produce a relaxation time constant on the order of 7000 s, and to merge relaxation finite time constants in the 0.5-2 s range into a single time content in the 1 s range. Results shed light on hierarchical deformation mechanisms in tissues, and on pathologies related to collagen relaxation such as diastolic dysfunction. Statement of Significance As fibroblasts proliferate within and remodel a tissue, they change the tissue mechanically. Quantifying these changes is critical for understanding wound healing and the development of pathologies such as cardiac fibrosis. Here, we characterize for the first time the spectrum of viscoelastic (rate-dependent) changes arising from the remodeling of reconstituted collagen by fibroblasts. The method also provides estimates of the viscoelastic spectra of fibroblasts within a three-dimensional culture environment. Results are of particular interest because of the ways that fibroblasts alter the mechanical response of collagen at loading frequencies associated with cardiac contraction in humans. © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    The energy flux into a fluidized granular medium at a vibrating wall

    Full text link
    We study the power input of a vibrating wall into a fluidized granular medium, using event driven simulations of a model granular system. The system consists of inelastic hard disks contained between a stationary and a vibrating elastic wall, in the absence of gravity. Two scaling relations for the power input are found, both involving the pressure. The transition between the two occurs when waves generated at the moving wall can propagate across the system. Choosing an appropriate waveform for the vibrating wall removes one of these scalings and renders the second very simple.Comment: 5 pages, revtex, 7 postscript figure

    Cystic fibrosis co-existing with trisomy 21

    Get PDF
    AbstractPrevious reports of children with co-existence of cystic fibrosis and full trisomy 21 suggest a very poor prognosis, with the majority of cases dying in infancy and the oldest reported survivor being 6years of age. We report the case of a young man with genetically confirmed trisomy 21 and homozygous for the F508del cystic fibrosis mutation. Despite the diagnosis of cystic fibrosis being delayed until the age of 2years he has transitioned to adult services and is now 25years of age. Currently he has poor lung function and a continuous ambulatory oxygen requirement

    Quantification of bioactive compound content in advanced fenugreek lines selected in Alberta: levels of galactomannan

    Get PDF
    Non-Peer ReviewedFenugreek (Trigonella foenum-graecum L.) was initially introduced to Alberta as a spice and forage crop. Numerous animal and clinical studies have associated the medicinal properties of the plant with galactomannan, diosgenin and 4-hydroxyisoleucine, the three major bioactive compounds found in fenugreek seed. These bioactive molecules have been demonstrated to regulate plasma cholesterol levels, reduce plasma triglyceride concentrations and stimulate insulin secretion for blood glucose metabolism. Fourteen advanced lines grown satisfactorily in southern Alberta were selected for quantification of these compounds over two harvest seasons. These lines were grown at three locations (Brooks, Bow Island and Lethbridge) in southern Alberta under two growing conditions (rain-fed or irrigated). In this study we report on five different seed lines which possessed a high galactomannan yield during the study; i.e., seed lines F75, L3312, CDC Quatro, F80 and L3308. Seed line F75 was the only line that performed well across all locations and growing conditions. It was observed that seed yield had a greater influence on galactomannan yield compared to seed galactomannan content. This suggests that cultivation of fenugreek plants for neutraceutical purposes should emphasize lines with high seed yield, as galactomannan content does not vary significantly among lines. An understanding of the interaction of bioactive compound content with respective ecotypes will assist in the selection of lines for their economic potential in the functional food and natural health product industry

    Unified Field Theory From Enlarged Transformation Group. The Covariant Derivative for Conservative Coordinate Transformations and Local Frame Transformations

    Full text link
    Pandres has developed a theory in which the geometrical structure of a real four-dimensional space-time is expressed by a real orthonormal tetrad, and the group of diffeomorphisms is replaced by a larger group called the conservation group. This paper extends the geometrical foundation for Pandres' theory by developing an appropriate covariant derivative which is covariant under all local Lorentz (frame) transformations, including complex Lorentz transformations, as well as conservative transformations. After defining this extended covariant derivative, an appropriate Lagrangian and its resulting field equations are derived. As in Pandres' theory, these field equations result in a stress-energy tensor that has terms which may automatically represent the electroweak field. Finally, the theory is extended to include 2-spinors and 4-spinors.Comment: Aug 25 replacement has corrected margin width

    Squark Mixing in Electron-Positron Reactions

    Full text link
    Squark mixing plays a large role in the phenomenology of the minimal supersymmetric standard model, determining the mass of the lightest Higgs boson and the electroweak interactions of the squarks themselves. We examine how mixing may be investigated in high energy e+ee^+ e^- reactions, both at LEP-II and the proposed linear collider. In particular, off-diagonal production of one lighter and one heavier squark allows one to measure the squark mixing angle, and would allow one to test the mass relations for the light Higgs boson. In some cases off-diagonal production may provide the best prospects to discover supersymmetry. In the context of the light bottom squark scenario, we show that existing data from LEP-II should show definitive evidence for the heavier bottom squark provided that its mass mb~2120m_{\tilde{b}_2} \le 120 GeV.Comment: 22 pages, latex, 6 figure

    Feshbach resonances in a quasi-2D atomic gas

    Full text link
    Strongly confining an ultracold atomic gas in one direction to create a quasi-2D system alters the scattering properties of this gas. We investigate the effects of confinement on Feshbach scattering resonances and show that strong confinement results in a shift in the position of the Feshbach resonance as a function of the magnetic field. This shift, as well as the change of the width of the resonance, are computed. We find that the resonance is strongly damped in the thermal gas, but in the condensate the resonance remains sharp due to many-body effects. We introduce a 2D model system, suited for the study of resonant superfluidity, and having the same scattering properties as the tightly confined real system near a Feshbach resonance. Exact relations are derived between measurable quantities and the model parameters.Comment: 8 pages, 2 figure

    The types of Mott insulator

    Full text link
    There are two classes of Mott insulators in nature, distinguished by their responses to weak doping. With increasing chemical potential, Type I Mott insulators undergo a first order phase transition from the undoped to the doped phase. In the presence of long-range Coulomb interactions, this leads to an inhomogeneous state exhibiting ``micro-phase separation.'' In contrast, in Type II Mott insulators charges go in continuously above a critical chemical potential. We show that if the insulating state has a broken symmetry, this increases the likelihood that it will be Type I. There exists a close analogy between these two types of Mott insulators and the familiar Type I and Type II superconductors

    One-way multigrid method in electronic structure calculations

    Get PDF
    We propose a simple and efficient one-way multigrid method for self-consistent electronic structure calculations based on iterative diagonalization. Total energy calculations are performed on several different levels of grids starting from the coarsest grid, with wave functions transferred to each finer level. The only changes compared to a single grid calculation are interpolation and orthonormalization steps outside the original total energy calculation and required only for transferring between grids. This feature results in a minimal amount of code change, and enables us to employ a sophisticated interpolation method and noninteger ratio of grid spacings. Calculations employing a preconditioned conjugate gradient method are presented for two examples, a quantum dot and a charged molecular system. Use of three grid levels with grid spacings 2h, 1.5h, and h decreases the computer time by about a factor of 5 compared to single level calculations.Comment: 10 pages, 2 figures, to appear in Phys. Rev. B, Rapid Communication
    corecore