3,846 research outputs found

    Protein Tyrosine Phosphatase 1B (PTP1B) in the immune system

    Get PDF
    Journal not available online when checked 02/04/19. DOI: 10.14800/ics.965Peer reviewedPublisher PD

    LĂ©on Marillier and the veridical hallucination in late-nineteenth- and early-twentieth-century French psychology and psychopathology.

    Get PDF
    Recent research on the professionalization of psychology at the end of the nineteenth century shows how objects of knowledge which appear illegitimate to us today shaped the institutionalization of disciplines. The veridical or telepathic hallucination was one of these objects, constituting a field both of division and exchange between nascent psychology and disciplines known as 'psychic sciences' in France, and 'psychical research' in the Anglo-American context. In France, Leon Marillier (1862-1901) was the main protagonist in discussions concerning the concept of the veridical hallucination, which gave rise to criticisms by mental specialists and psychopathologists. After all, not only were these hallucinations supposed to occur in healthy subjects, but they also failed to correspond to the Esquirolian definition of hallucinations through being corroborated by their representation of external, objective events.Andreas Sommer’s contribution to this article was made possible through support by the Perrott-Warrick Fund, Trinity College, University of Cambridge, and Cedar Creek Institute, Charlottesville, VA.This is the author accepted manuscript. The final version is available from SAGE via http://dx.doi.org/10.1177/0957154X1456275

    Scale-aware neural calibration for wide swath altimetry observations

    Full text link
    Sea surface height (SSH) is a key geophysical parameter for monitoring and studying meso-scale surface ocean dynamics. For several decades, the mapping of SSH products at regional and global scales has relied on nadir satellite altimeters, which provide one-dimensional-only along-track satellite observations of the SSH. The Surface Water and Ocean Topography (SWOT) mission deploys a new sensor that acquires for the first time wide-swath two-dimensional observations of the SSH. This provides new means to observe the ocean at previously unresolved spatial scales. A critical challenge for the exploiting of SWOT data is the separation of the SSH from other signals present in the observations. In this paper, we propose a novel learning-based approach for this SWOT calibration problem. It benefits from calibrated nadir altimetry products and a scale-space decomposition adapted to SWOT swath geometry and the structure of the different processes in play. In a supervised setting, our method reaches the state-of-the-art residual error of ~1.4cm while proposing a correction on the entire spectral from 10km to 1000kComment: 8 pages, 7 figures, Preprin

    Training neural mapping schemes for satellite altimetry with simulation data

    Full text link
    Satellite altimetry combined with data assimilation and optimal interpolation schemes have deeply renewed our ability to monitor sea surface dynamics. Recently, deep learning (DL) schemes have emerged as appealing solutions to address space-time interpolation problems. The scarcity of real altimetry dataset, in terms of space-time coverage of the sea surface, however impedes the training of state-of-the-art neural schemes on real-world case-studies. Here, we leverage both simulations of ocean dynamics and satellite altimeters to train simulation-based neural mapping schemes for the sea surface height and demonstrate their performance for real altimetry datasets. We analyze further how the ocean simulation dataset used during the training phase impacts this performance. This experimental analysis covers both the resolution from eddy-present configurations to eddy-rich ones, forced simulations vs. reanalyses using data assimilation and tide-free vs. tide-resolving simulations. Our benchmarking framework focuses on a Gulf Stream region for a realistic 5-altimeter constellation using NEMO ocean simulations and 4DVarNet mapping schemes. All simulation-based 4DVarNets outperform the operational observation-driven and reanalysis products, namely DUACS and GLORYS. The more realistic the ocean simulation dataset used during the training phase, the better the mapping. The best 4DVarNet mapping was trained from an eddy-rich and tide-free simulation datasets. It improves the resolved longitudinal scale from 151 kilometers for DUACS and 241 kilometers for GLORYS to 98 kilometers and reduces the root mean squared error (RMSE) by 23% and 61%. These results open research avenues for new synergies between ocean modelling and ocean observation using learning-based approaches

    A posteriori learning for quasi-geostrophic turbulence parametrization

    Full text link
    The use of machine learning to build subgrid parametrizations for climate models is receiving growing attention. State-of-the-art strategies address the problem as a supervised learning task and optimize algorithms that predict subgrid fluxes based on information from coarse resolution models. In practice, training data are generated from higher resolution numerical simulations transformed in order to mimic coarse resolution simulations. By essence, these strategies optimize subgrid parametrizations to meet so-called a priori\textit{a priori} criteria. But the actual purpose of a subgrid parametrization is to obtain good performance in terms of a posteriori\textit{a posteriori} metrics which imply computing entire model trajectories. In this paper, we focus on the representation of energy backscatter in two dimensional quasi-geostrophic turbulence and compare parametrizations obtained with different learning strategies at fixed computational complexity. We show that strategies based on a priori\textit{a priori} criteria yield parametrizations that tend to be unstable in direct simulations and describe how subgrid parametrizations can alternatively be trained end-to-end in order to meet a posteriori\textit{a posteriori} criteria. We illustrate that end-to-end learning strategies yield parametrizations that outperform known empirical and data-driven schemes in terms of performance, stability and ability to apply to different flow configurations. These results support the relevance of differentiable programming paradigms for climate models in the future.Comment: 36 pages, 14 figures, submitted to Journal of Advances in Modeling Earth Systems (JAMES

    Can we map the interannual variability of the whole upper Southern Ocean with the current database of hydrographic observations?

    No full text
    International audienceWith the advent of Argo floats, it now seems feasible to study the interannual variations of upper ocean hydrographic properties of the historically undersampled Southern Ocean. To do so, scattered hydrographic profiles often first need to be mapped. To investigate biases and errors associated both with the limited space-time distribution of the profiles and with the mapping methods, we colocate the mixed-layer depth (MLD) output from a state-of-the-art 1/12° DRAKKAR simulation onto the latitude, longitude, and date of actual in situ profiles from 2005 to 2014. We compare the results obtained after remapping using a nearest neighbor (NN) interpolation and an objective analysis (OA) with different spatiotemporal grid resolutions and decorrelation scales. NN is improved with a coarser resolution. OA performs best with low decorrelation scales, avoiding too strong a smoothing, but returns values over larger areas with large decorrelation scales and low temporal resolution, as more points are available. For all resolutions OA represents better the annual extreme values than NN. Both methods underestimate the seasonal cycle in MLD. MLD biases are lower than 10 m on average but can exceed 250 m locally in winter. We argue that current Argo data should not be mapped to infer decadal trends in MLD, as all methods are unable to reproduce existing trends without creating unrealistic extra ones. We also show that regions of the subtropical Atlantic, Indian, and Pacific Oceans, and the whole ice-covered Southern Ocean, still cannot be mapped even by the best method because of the lack of observational data

    Stochastic variability of oceanic flows above topography anomalies

    Get PDF
    International audienceWe describe a stochastic variability mechanism which is genuinely internal to the ocean, i.e. not due to fluctuations in atmospheric forcing. % The key ingredient is the existence of closed contours of bottom topography surrounded by a stirring region of enhanced eddy activity. This configuration leads to the formation of a robust but highly variable vortex above the topography anomaly. The vortex dynamics integrates the white noise forcing of oceanic eddies into a red noise signal for the large scale volume transport of the vortex. The strong interannual fluctuations of the transport of the Zapiola anticyclone (∌100 Sv\sim 100 \ Sv) in the Argentine basin are argued to be partly due to such eddy-driven stochastic variability, on the basis of a 310310 years long simulation of a comprehensive global ocean model run driven by a repeated-year forcing

    C3PO: A Network and Application Framework for Spontaneous and Ephemeral Social Networks

    Get PDF
    International audienceThe C3PO project promotes the development of new kind of social networks called Spontaneous and Ephemeral Social Networks (SESNs) dedicated to happenings such as cultural or sport events. SESNs rely on both opportunistic networks formed dynamically by the mobile devices of event attendees, and on an event-based communication model. Therefore, user can exchange digital contents with the other members of their SESNs, even without Internet access. This paper presents the framework developed in the C3PO project to provide network and application supports in such challenged networks. This framework exploits the different wireless interfaces of the mobile devices to interconnect them and to disseminate content through the resulting opportunistic network. At the application layer, this framework is composed of plugins that process locally the data stream to offer generic features, or to easily build applications dedicated to specific happenings
    • 

    corecore