14,790 research outputs found

    Infinite sequential Nash equilibrium

    Full text link
    In game theory, the concept of Nash equilibrium reflects the collective stability of some individual strategies chosen by selfish agents. The concept pertains to different classes of games, e.g. the sequential games, where the agents play in turn. Two existing results are relevant here: first, all finite such games have a Nash equilibrium (w.r.t. some given preferences) iff all the given preferences are acyclic; second, all infinite such games have a Nash equilibrium, if they involve two agents who compete for victory and if the actual plays making a given agent win (and the opponent lose) form a quasi-Borel set. This article generalises these two results via a single result. More generally, under the axiomatic of Zermelo-Fraenkel plus the axiom of dependent choice (ZF+DC), it proves a transfer theorem for infinite sequential games: if all two-agent win-lose games that are built using a well-behaved class of sets have a Nash equilibrium, then all multi-agent multi-outcome games that are built using the same well-behaved class of sets have a Nash equilibrium, provided that the inverse relations of the agents' preferences are strictly well-founded.Comment: 14 pages, will be published in LMCS-2011-65

    Infinite subgame perfect equilibrium in the Hausdorff difference hierarchy

    Full text link
    Subgame perfect equilibria are specific Nash equilibria in perfect information games in extensive form. They are important because they relate to the rationality of the players. They always exist in infinite games with continuous real-valued payoffs, but may fail to exist even in simple games with slightly discontinuous payoffs. This article considers only games whose outcome functions are measurable in the Hausdorff difference hierarchy of the open sets (\textit{i.e.} Δ20\Delta^0_2 when in the Baire space), and it characterizes the families of linear preferences such that every game using these preferences has a subgame perfect equilibrium: the preferences without infinite ascending chains (of course), and such that for all players aa and bb and outcomes x,y,zx,y,z we have ¬(z<ay<ax ∧ x<bz<by)\neg(z <_a y <_a x \,\wedge\, x <_b z <_b y). Moreover at each node of the game, the equilibrium constructed for the proof is Pareto-optimal among all the outcomes occurring in the subgame. Additional results for non-linear preferences are presented.Comment: The alternative definition of the difference hierarchy has changed slightl
    • …
    corecore