2,146 research outputs found

    Predicting physiologically-relevant oxygen concentrations in precision-cut liver slices using mathematical modelling

    Get PDF
    Precision cut liver slices represent an encouraging ex vivo method to understand the pathogenesis of liver disease alongside drug induced liver injury. Despite being more physiologically relevant compared to in vitro models, precision cut liver slices are limited by the availability of healthy human tissue and experimental variability. Internal oxygen concentration and media composition govern the longevity and viability of the slices during the culture period and as such, a variety of approaches have been taken to maximise the appropriateness of the internal oxygen concentrations across the slice. The aim of this study was to predict whether it is possible to generate a physiologically relevant oxygen gradient of 35-65mmHg across a precision cut liver slice using mathematical modelling. Simulations explore how the internal oxygen concentration changes as a function of the diameter of the slice, the position inside the well and the external incubator oxygen concentration. The model predicts that the desired oxygen gradient may be achieved using a 5mm diameter slice at atmospheric oxygen concentrations, provided that the slice is positioned at a certain height within the well of a 12-well plate

    Predicting physiologically-relevant oxygen concentrations in precision-cut liver slices using mathematical modelling

    Get PDF
    Precision cut liver slices represent an encouraging ex vivo method to understand the pathogenesis of liver disease alongside drug induced liver injury. Despite being more physiologically relevant compared to in vitro models, precision cut liver slices are limited by the availability of healthy human tissue and experimental variability. Internal oxygen concentration and media composition govern the longevity and viability of the slices during the culture period and as such, a variety of approaches have been taken to maximise the appropriateness of the internal oxygen concentrations across the slice. The aim of this study was to predict whether it is possible to generate a physiologically relevant oxygen gradient of 35-65mmHg across a precision cut liver slice using mathematical modelling. Simulations explore how the internal oxygen concentration changes as a function of the diameter of the slice, the position inside the well and the external incubator oxygen concentration. The model predicts that the desired oxygen gradient may be achieved using a 5mm diameter slice at atmospheric oxygen concentrations, provided that the slice is positioned at a certain height within the well of a 12-well plate

    Modelling the impact of changes in the extracellular environment on the cytosolic free NAD+/NADH ratio during cell culture.

    Get PDF
    Cancer cells depend on glucose metabolism via glycolysis as a primary energy source, despite the presence of oxygen and fully functioning mitochondria, in order to promote growth, proliferation and longevity. Glycolysis relies upon NAD+ to accept electrons in the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reaction, linking the redox state of the cytosolic NAD+ pool to glycolytic rate. The free cytosolic NAD+/NADH ratio is involved in over 700 oxidoreductive enzymatic reactions and as such, the NAD+/NADH ratio is regarded as a metabolic readout of overall cellular redox state. Many experimental techniques that monitor or measure total NAD+ and NADH are unable to distinguish between protein-bound and unbound forms. Yet total NAD+/NADH measurements yield little information, since it is the free forms of NAD+ and NADH that determine the kinetic and thermodynamic influence of redox potential on glycolytic rate. Indirect estimations of free NAD+/NADH are based on the lactate/pyruvate (L/P) ratio at chemical equilibrium, but these measurements are often undermined by high lability. To elucidate the sensitivity of the free NAD+/NADH ratio to changes in extracellular substrate, an in silico model of hepatocarcinoma glycolysis was constructed and validated against in vitro data. Model simulations reveal that over experimentally relevant concentrations, changes in extracellular glucose and lactate concentration during routine cancer cell culture can lead to significant deviations in the NAD+/NADH ratio. Based on the principles of chemical equilibrium, the model provides a platform from which experimentally challenging situations may be examined, suggesting that extracellular substrates play an important role in cellular redox and bioenergetic homeostasis

    Modulation of Antimalarial Activity at a Putative Bisquinoline Receptor in vivo Using Fluorinated Bisquinolines

    Get PDF
    Antimalarials can interact with heme covalently, by - interactions or hydrogen bonding. Consequently, the prototropy of 4-aminoquinolines and quinoline methanols was investigated using quantum mechanics. Calculations showed mefloquine protonated preferentially at the piperidine and was impeded at the endocyclic nitrogen due to electronic rather than steric factors. In gas phase calculations, 7-substituted mono- and bis-4-aminoquinolines were preferentially protonated at the endocyclic quinoline nitrogen. By contrast, compounds with a trifluoromethyl substituent on both the 2- and 8-positions, reversed the order of protonation which now favored the exocyclic secondary amine nitrogen at the 4-position. Loss of antimalarial efficacy by CF3 groups simultaneously occupying the 2- and 8-positions was recovered if the CF3 group occupied the 7-position. Hence, trifluromethyl groups buttressing quinolinyl nitrogen shifted binding of antimalarials to hematin, enabling switching from endocyclic to the exocyclic N. Both theoretical calculations (DFT calculations: B3LYP/6- 31+G*) and crystal structure of (±)-trans-N1,N2-bis-(2,8-ditrifluoromethylquinolin-4- yl)cyclohexane-1,2-diamine were used to reveal preferred mode(s) of interaction with hematin. The order of antimalarial activity in vivo followed the capacity for a redox change of the iron(III)state which has important implications for the future rational design of 4- aminoquinoline antimalarials

    Synthesis, Structural Determination, and Pharmacology of Putative Dinitroaniline Antimalarials

    Get PDF
    A series of novel, homologous compounds possessing the general formula N1‐Nn‐bis(2,6‐dinitro‐4‐trifluormethylphenyl)‐1,n‐diamino alkanes (where n=4, 6, 10 or 12), were designed to probe inter‐ and intra‐ binding site dimensions in malarial parasite (Plasmodium) tubulin. Various crystal structures, including chloralin and trifluralin, an isopropyl dimer, and 2,6‐dinitro‐4‐trifluoromethyl‐phenylamine, were determined. Dinitroanilines, when soluble, were evaluated both in culture and in vivo. Trifluralin was up to 2‐fold more active than chloralin against cultured parasites. The isopropyl dimer was water soluble (>5 mM) and revealed activity superior to that of chloralin in culture. The effects of selected dinitroanilines upon the mitotic microtubular structures of Plasmodium, the putative target of these dinitroanilines, were also determined. Electronic properties of the molecules were calculated using DFT (B3LYP/6‐31+G* level) to ascertain whether incorporation of such a pharmacophore could allow both QSAR and rational development of more selectively toxic antiparasitic agents

    Purpurogallin-A heme binding component of oak galls

    Get PDF
    Recently, it has been shown that Purpurogallin (PPG), an orange benztropolone constituent of oak galls and its derivative, CU-CPT22, can compete with the binding of the specific lipoprotein ligand to toll-like receptors (TLRs), which are type I transmembrane proteins. These recognize pathogen-derived macromolecules that play a key role in the innate immune system. This system provides an attractive target for the treatment of various immune disorders. Notably, PPG also interacts with various metals and its mode of action against HIV in vitro may involve inhibition of metal containing integrases. In the current study, an optimised synthesis of PPG is presented together with its gas phase behaviour (probed by mass spectrometry) as well as its redox behaviour with porphyrins such as heme. This interaction may also explain its effects at metal containing integrases within HIV in vitro as well as its action during processing of iron complexes within Plasmodia. This compound could serve as a novel prototype for the synthesis of novel redox active antimalarials

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    A search for the decay modes B+/- to h+/- tau l

    Get PDF
    We present a search for the lepton flavor violating decay modes B+/- to h+/- tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472 million BBbar pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and l candidates, we are able to fully determine the tau four-momentum. The resulting tau candidate mass is our main discriminant against combinatorial background. We see no evidence for B+/- to h+/- tau l decays and set a 90% confidence level upper limit on each branching fraction at the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
    corecore