30,480 research outputs found
Unfolding Latent Tree Structures using 4th Order Tensors
Discovering the latent structure from many observed variables is an important
yet challenging learning task. Existing approaches for discovering latent
structures often require the unknown number of hidden states as an input. In
this paper, we propose a quartet based approach which is \emph{agnostic} to
this number. The key contribution is a novel rank characterization of the
tensor associated with the marginal distribution of a quartet. This
characterization allows us to design a \emph{nuclear norm} based test for
resolving quartet relations. We then use the quartet test as a subroutine in a
divide-and-conquer algorithm for recovering the latent tree structure. Under
mild conditions, the algorithm is consistent and its error probability decays
exponentially with increasing sample size. We demonstrate that the proposed
approach compares favorably to alternatives. In a real world stock dataset, it
also discovers meaningful groupings of variables, and produces a model that
fits the data better
Encoder-Decoder Network with Guided Transmission Map: Architecture -- Extended Abstract
An insight into the architecture of the Encoder-Decoder Network with Guided
Transmission Map (EDN-GTM), a novel and effective single image dehazing scheme,
is presented in this paper. The EDN-GTM takes a conventional RGB hazy image in
conjunction with the corresponding transmission map estimated by the dark
channel prior (DCP) approach as inputs of the network. The EDN-GTM adopts an
enhanced structure of U-Net developed for dehazing tasks and the resulting
EDN-GDM has shown state-of-the-art performances on benchmark dehazing datasets
in terms of PSNR and SSIM metrics. In order to give an in-depth understanding
of the well-designed architecture which largely contributes to the success of
the EDN-GTM, extensive experiments and analysis from selecting the core
structure of the scheme to investigating advanced network designs are presented
in this paper.Comment: 3 pages, 2 figures, ASPAI 202
Improved Noisy Student Training for Automatic Speech Recognition
Recently, a semi-supervised learning method known as "noisy student training"
has been shown to improve image classification performance of deep networks
significantly. Noisy student training is an iterative self-training method that
leverages augmentation to improve network performance. In this work, we adapt
and improve noisy student training for automatic speech recognition, employing
(adaptive) SpecAugment as the augmentation method. We find effective methods to
filter, balance and augment the data generated in between self-training
iterations. By doing so, we are able to obtain word error rates (WERs)
4.2%/8.6% on the clean/noisy LibriSpeech test sets by only using the clean 100h
subset of LibriSpeech as the supervised set and the rest (860h) as the
unlabeled set. Furthermore, we are able to achieve WERs 1.7%/3.4% on the
clean/noisy LibriSpeech test sets by using the unlab-60k subset of LibriLight
as the unlabeled set for LibriSpeech 960h. We are thus able to improve upon the
previous state-of-the-art clean/noisy test WERs achieved on LibriSpeech 100h
(4.74%/12.20%) and LibriSpeech (1.9%/4.1%).Comment: 5 pages, 5 figures, 4 tables; v2: minor revisions, reference adde
- …