30,480 research outputs found

    Unfolding Latent Tree Structures using 4th Order Tensors

    Full text link
    Discovering the latent structure from many observed variables is an important yet challenging learning task. Existing approaches for discovering latent structures often require the unknown number of hidden states as an input. In this paper, we propose a quartet based approach which is \emph{agnostic} to this number. The key contribution is a novel rank characterization of the tensor associated with the marginal distribution of a quartet. This characterization allows us to design a \emph{nuclear norm} based test for resolving quartet relations. We then use the quartet test as a subroutine in a divide-and-conquer algorithm for recovering the latent tree structure. Under mild conditions, the algorithm is consistent and its error probability decays exponentially with increasing sample size. We demonstrate that the proposed approach compares favorably to alternatives. In a real world stock dataset, it also discovers meaningful groupings of variables, and produces a model that fits the data better

    Encoder-Decoder Network with Guided Transmission Map: Architecture -- Extended Abstract

    Full text link
    An insight into the architecture of the Encoder-Decoder Network with Guided Transmission Map (EDN-GTM), a novel and effective single image dehazing scheme, is presented in this paper. The EDN-GTM takes a conventional RGB hazy image in conjunction with the corresponding transmission map estimated by the dark channel prior (DCP) approach as inputs of the network. The EDN-GTM adopts an enhanced structure of U-Net developed for dehazing tasks and the resulting EDN-GDM has shown state-of-the-art performances on benchmark dehazing datasets in terms of PSNR and SSIM metrics. In order to give an in-depth understanding of the well-designed architecture which largely contributes to the success of the EDN-GTM, extensive experiments and analysis from selecting the core structure of the scheme to investigating advanced network designs are presented in this paper.Comment: 3 pages, 2 figures, ASPAI 202

    Improved Noisy Student Training for Automatic Speech Recognition

    Full text link
    Recently, a semi-supervised learning method known as "noisy student training" has been shown to improve image classification performance of deep networks significantly. Noisy student training is an iterative self-training method that leverages augmentation to improve network performance. In this work, we adapt and improve noisy student training for automatic speech recognition, employing (adaptive) SpecAugment as the augmentation method. We find effective methods to filter, balance and augment the data generated in between self-training iterations. By doing so, we are able to obtain word error rates (WERs) 4.2%/8.6% on the clean/noisy LibriSpeech test sets by only using the clean 100h subset of LibriSpeech as the supervised set and the rest (860h) as the unlabeled set. Furthermore, we are able to achieve WERs 1.7%/3.4% on the clean/noisy LibriSpeech test sets by using the unlab-60k subset of LibriLight as the unlabeled set for LibriSpeech 960h. We are thus able to improve upon the previous state-of-the-art clean/noisy test WERs achieved on LibriSpeech 100h (4.74%/12.20%) and LibriSpeech (1.9%/4.1%).Comment: 5 pages, 5 figures, 4 tables; v2: minor revisions, reference adde
    • …
    corecore