53 research outputs found

    3D Correlations in the Lyman-α\alpha Forest from Early DESI Data

    Full text link
    We present the first measurements of Lyman-α\alpha (Lyα\alpha) forest correlations using early data from the Dark Energy Spectroscopic Instrument (DESI). We measure the auto-correlation of Lyα\alpha absorption using 88,509 quasars at z>2z>2, and its cross-correlation with quasars using a further 147,899 tracer quasars at z1.77z\gtrsim1.77. Then, we fit these correlations using a 13-parameter model based on linear perturbation theory and find that it provides a good description of the data across a broad range of scales. We detect the BAO peak with a signal-to-noise ratio of 3.8σ3.8\sigma, and show that our measurements of the auto- and cross-correlations are fully-consistent with previous measurements by the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). Even though we only use here a small fraction of the final DESI dataset, our uncertainties are only a factor of 1.7 larger than those from the final eBOSS measurement. We validate the existing analysis methods of Lyα\alpha correlations in preparation for making a robust measurement of the BAO scale with the first year of DESI data

    Overview of the instrumentation for the Dark Energy Spectroscopic Instrument

    Get PDF
    The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z > 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 3.°2 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360–980 nm with a spectral resolution that ranges from 2000–5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 0.″1 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 × 10−17 erg s−1 cm−2 in 1000 s for galaxies at z = 1.4–1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned

    Du Caire à Assouân : impressions d'Égypte / par la Ctesse de La Morinière de La Rochecantin ; préface de M. Georges Legrain,...

    No full text
    Appartient à l’ensemble documentaire : BbLevt0Contient une table des matièresAvec mode text
    corecore