300 research outputs found
Can big data solve a big problem? Reporting the obesity data landscape in line with the Foresight obesity system map.
BACKGROUND: Obesity research at a population level is multifaceted and complex. This has been characterised in the UK by the Foresight obesity systems map, identifying over 100 variables, across seven domain areas which are thought to influence energy balance, and subsequent obesity. Availability of data to consider the whole obesity system is traditionally lacking. However, in an era of big data, new possibilities are emerging. Understanding what data are available can be the first challenge, followed by an inconsistency in data reporting to enable adequate use in the obesity context. In this study we map data sources against the Foresight obesity system map domains and nodes and develop a framework to report big data for obesity research. Opportunities and challenges associated with this new data approach to whole systems obesity research are discussed. METHODS: Expert opinion from the ESRC Strategic Network for Obesity was harnessed in order to develop a data source reporting framework for obesity research. The framework was then tested on a range of data sources. In order to assess availability of data sources relevant to obesity research, a data mapping exercise against the Foresight obesity systems map domains and nodes was carried out. RESULTS: A reporting framework was developed to recommend the reporting of key information in line with these headings: Background; Elements; Exemplars; Content; Ownership; Aggregation; Sharing; Temporality (BEE-COAST). The new BEE-COAST framework was successfully applied to eight exemplar data sources from the UK. 80% coverage of the Foresight obesity systems map is possible using a wide range of big data sources. The remaining 20% were primarily biological measurements often captured by more traditional laboratory based research. CONCLUSIONS: Big data offer great potential across many domains of obesity research and need to be leveraged in conjunction with traditional data for societal benefit and health promotion
Evaluating the 2014 Sugar-Sweetened Beverage Tax in Chile : An Observational Study in Urban Areas
Background In October 2014, Chile implemented a tax modification on SSBs called the Impuesto Adicional a las Bebidas AnalcohΓ³licas (IABA). The design of the tax was unique, increasing the tax on soft drinks above 6.25 grams of added sugar per 100 millilitres and decreasing the tax for those below this threshold. Methods and Findings This study evaluates Chileβs sugar sweetened beverage (SSB) tax, which was announced in March 2014 and implemented in October 2014. We used household level grocery purchasing data from 2011 to 2015, for 2,836 households living in cities and representative of the urban population of Chile. We employed a fixed-effects econometric approach and estimated the before-after change in purchasing of SSBs controlling for seasonality, general time trend, temperature, economic fluctuations as well as time invariant household characteristics. Results showed significant changes in purchasing for the statistically preferred model: while there was a barely significant decrease in the volume of all soft drinks, there was a highly significant decrease in the monthly purchased volume of the higher taxed, sugary soft drinks by 21.6%. The direction of this reduction was robust to different empirical modelling approaches, but the statistical significance and the magnitude of the changes varied considerably. The reduction in soft drink purchasing was most evident amongst higher socioeconomic groups and higher pre-tax purchasers of sugary soft drinks. There was no systematic, robust pattern in the estimates by householdsβ obesity status. After tax implementation, the purchase prices of soft drinks decreased for the items where the tax rate was reduced, but remained unchanged for sugary items, for which the tax was increased. However, the purchase prices increased for sugary soft drinks at the time of the policy announcement. The main limitations include a lack of a randomized design limiting the extent of causal inference possible, and the focus on purchasing data, rather than consumption or health outcomes. Conclusions The results of sub-group analyses suggest that the policy may have been partially effective, though not necessarily in ways that are likely to reduce socioeconomic inequalities in diet-related health. It remains unclear, whether the policy has had a major, overall population level impact. Additionally, since the present study examined purchasing of soft drinks for only one year, a longer-term evaluation, ideally including an assessment of the consumption and health impacts, should be conducted in future research
The Glial Scar-Monocyte Interplay: A Pivotal Resolution Phase in Spinal Cord Repair
The inflammatory response in the injured spinal cord, an immune privileged site, has been mainly associated with the poor prognosis. However, recent data demonstrated that, in fact, some leukocytes, namely monocytes, are pivotal for repair due to their alternative anti-inflammatory phenotype. Given the pro-inflammatory milieu within the traumatized spinal cord, known to skew monocytes towards a classical phenotype, a pertinent question is how parenchymal-invading monocytes acquire resolving properties essential for healing, under such unfavorable conditions. In light of the spatial association between resolving (interleukin (IL)-10 producing) monocytes and the glial scar matrix chondroitin sulfate proteoglycan (CSPG), in this study we examined the mutual relationship between these two components. By inhibiting the de novo production of CSPG following spinal cord injury, we demonstrated that this extracellular matrix, mainly known for its ability to inhibit axonal growth, serves as a critical template skewing the entering monocytes towards the resolving phenotype. In vitro cell culture studies demonstrated that this matrix alone is sufficient to induce such monocyte polarization. Reciprocal conditional ablation of the monocyte-derived macrophages concentrated at the lesion margins, using diphtheria toxin, revealed that these cells have scar matrix-resolving properties. Replenishment of monocytic cell populations to the ablated mice demonstrated that this extracellular remodeling ability of the infiltrating monocytes requires their expression of the matrix-degrading enzyme, matrix metalloproteinase 13 (MMP-13), a property that was found here to be crucial for functional recovery. Altogether, this study demonstrates that the glial scar-matrix, a known obstacle to regeneration, is a critical component skewing the encountering monocytes towards a resolving phenotype. In an apparent feedback loop, monocytes were found to regulate scar resolution. This cross-regulation between the glial scar and monocytes primes the resolution of this interim phase of spinal cord repair, thereby providing a fundamental platform for the dynamic healing response
6-Sulphated Chondroitins Have a Positive Influence on Axonal Regeneration
Chondroitin sulphate proteoglycans (CSPGs) upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs). Chondroitin 6-sulphotransferase-1 (C6ST-1) is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs). Using C6ST-1 knockout mice (KO), we studied post-injury changes in chondroitin sulphotransferase (CSST) expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT) showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury
Ca2+ monitoring in Plasmodium falciparum using the yellow cameleon-Nano biosensor
Calcium (Ca2+)-mediated signaling is a conserved mechanism in eukaryotes, including the human malaria parasite, Plasmodium falciparum. Due to its small size (300?nM). We determined that the mammalian SERCA inhibitor thapsigargin and antimalarial dihydroartemisinin did not perturb SERCA activity. The change of the cytosolic Ca2+ level in P. falciparum was additionally detectable by flow cytometry. Thus, we propose that the developed YC-Nano-based system is useful to study Ca2+ signaling in P. falciparum and is applicable for drug screening.We are grateful to Japanese Red Cross Blood Society for providing human RBC and plasma. We also thank Tanaka R, Ogoshi (Sakura) M and Matsumoto N for technical assistance and Templeton TJ for critical reading. This study was conducted at the Joint Usage / Research Center on Tropical Disease, Institute of Tropical Medicine, Nagasaki University, Japan. KP was a Tokyo Biochemical Research Foundation (TBRF, http://www.tokyobrf.or.jp) post-doctoral fellow and PEF was a Japanese Society of Promotion Sciences (JSPS) post-doctoral fellow. This work was supported in part by the TBRF (K.P.), JSPS (P.E.F.), Takeda Science Foundation (K.Y.), Grants-in-Aids for Scientific Research 24590509 (K.Y.), 22390079 (O.K.), and for Scientific Research on Innovative Areas 23117008 (O.K.), MEXT, Japan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Oxygen-Glucose Deprivation Induced Glial Scar-Like Change in Astrocytes
It has been demonstrated that cerebral ischemia induces astrocyte reactivity, and subsequent glial scar formation inhibits axonal regeneration during the recovery phase. Investigating the mechanism of glial scar formation will facilitate the development of strategies to improve axonal regeneration. However, an in vitro model of ischemia-induced glial scar has not yet been systematically established.In the present study, we at the first time found that oxygen-glucose deprivation (OGD) in vitro can induce rat cortical astrocytes to present characteristics of glial scar. After OGD for 6 h, astrocytes showed a remarkable proliferation following 24 h reperfusion, evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and BrdU immunocytochemistry. Meanwhile, the expression of glial fibrillary acidic protein significantly increased, so did the expression of neurocan, which is a hallmark of the glial scar. In further experiments, neurons were co-cultured with astrocytes, which had been exposed to OGD, and then the immunostaining of class III Ξ²-tubulin was carried out to assess the neurite growth. When the co-culture was performed at 48 h reperfusion of astrocytes, the neurite growth was obviously inhibited, and this inhibition could be reversed by chondroitinase ABC, which digests glycosaminoglycan chains on CSPGs, including neurocan. However, the processes of neurons were elongated, when the co-culture was performed immediately after OGD.Our results indicated that after conditioned OGD the astrocytes presented the characteristics of the glial scar, which are also comparable to the astrocytes in acute and chronic phases after cerebral ischemia in vivo. Therefore, the present system may be used as an in vitro model to explore the mechanisms underlying glial scar formation and the treatments to improve axonal regeneration after cerebral ischemia
A Novel and Lethal De Novo LQT-3 Mutation in a Newborn with Distinct Molecular Pharmacology and Therapeutic Response
SCN5A encodes the alpha-subunit (Na(v)1.5) of the principle Na(+) channel in the human heart. Genetic lesions in SCN5A can cause congenital long QT syndrome (LQTS) variant 3 (LQT-3) in adults by disrupting inactivation of the Na(v)1.5 channel. Pharmacological targeting of mutation-altered Na(+) channels has proven promising in developing a gene-specific therapeutic strategy to manage specifically this LQTS variant. SCN5A mutations that cause similar channel dysfunction may also contribute to sudden infant death syndrome (SIDS) and other arrhythmias in newborns, but the prevalence, impact, and therapeutic management of SCN5A mutations may be distinct in infants compared with adults.Here, in a multidisciplinary approach, we report a de novo SCN5A mutation (F1473C) discovered in a newborn presenting with extreme QT prolongation and differential responses to the Na(+) channel blockers flecainide and mexiletine. Our goal was to determine the Na(+) channel phenotype caused by this severe mutation and to determine whether distinct effects of different Na(+) channel blockers on mutant channel activity provide a mechanistic understanding of the distinct therapeutic responsiveness of the mutation carrier. Sequence analysis of the proband revealed the novel missense SCN5A mutation (F1473C) and a common variant in KCNH2 (K897T). Patch clamp analysis of HEK 293 cells transiently transfected with wild-type or mutant Na(+) channels revealed significant changes in channel biophysics, all contributing to the proband's phenotype as predicted by in silico modeling. Furthermore, subtle differences in drug action were detected in correcting mutant channel activity that, together with both the known genetic background and age of the patient, contribute to the distinct therapeutic responses observed clinically.The results of our study provide further evidence of the grave vulnerability of newborns to Na(+) channel defects and suggest that both genetic background and age are particularly important in developing a mutation-specific therapeutic personalized approach to manage disorders in the young
- β¦