29 research outputs found

    Mouse models of cancers: opportunities to address heterogeneity of human cancer and evaluate therapeutic strategies

    Get PDF
    The heterogeneity of human breast cancer has been well described at the morphological, molecular, and genomic levels. This heterogeneity presents one of the greatest obstacles in the effective treatment of breast cancer since the distinct forms of breast cancer that reflect distinct mechanisms of disease will require distinct therapies. Although mouse models of cancer have traditionally been used to simplify the study of human disease, we suggest that there are opportunities to also model the complexity and heterogeneity of human cancer. Here, we illustrate the similarities of mouse models to the human condition in the heterogeneity of both pathologies and gene expression. We then provide an illustration of the potential of gene expression analysis methods when used in conjunction with current treatment options to model individualized therapeutic regimes

    The Rossiter-McLaughlin effect in Exoplanet Research

    Full text link
    The Rossiter-McLaughlin effect occurs during a planet's transit. It provides the main means of measuring the sky-projected spin-orbit angle between a planet's orbital plane, and its host star's equatorial plane. Observing the Rossiter-McLaughlin effect is now a near routine procedure. It is an important element in the orbital characterisation of transiting exoplanets. Measurements of the spin-orbit angle have revealed a surprising diversity, far from the placid, Kantian and Laplacian ideals, whereby planets form, and remain, on orbital planes coincident with their star's equator. This chapter will review a short history of the Rossiter-McLaughlin effect, how it is modelled, and will summarise the current state of the field before describing other uses for a spectroscopic transit, and alternative methods of measuring the spin-orbit angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H. Deeg & J.A. Belmont

    Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex

    Get PDF
    The 5′-cap structure is a distinct feature of eukaryotic mRNAs, and eukaryotic viruses generally modify the 5′-end of viral RNAs to mimic cellular mRNA structure, which is important for RNA stability, protein translation and viral immune escape. SARS coronavirus (SARS-CoV) encodes two S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTase) which sequentially methylate the RNA cap at guanosine-N7 and ribose 2′-O positions, catalyzed by nsp14 N7-MTase and nsp16 2′-O-MTase, respectively. A unique feature for SARS-CoV is that nsp16 requires non-structural protein nsp10 as a stimulatory factor to execute its MTase activity. Here we report the biochemical characterization of SARS-CoV 2′-O-MTase and the crystal structure of nsp16/nsp10 complex bound with methyl donor SAM. We found that SARS-CoV nsp16 MTase methylated m7GpppA-RNA but not m7GpppG-RNA, which is in contrast with nsp14 MTase that functions in a sequence-independent manner. We demonstrated that nsp10 is required for nsp16 to bind both m7GpppA-RNA substrate and SAM cofactor. Structural analysis revealed that nsp16 possesses the canonical scaffold of MTase and associates with nsp10 at 1∶1 ratio. The structure of the nsp16/nsp10 interaction interface shows that nsp10 may stabilize the SAM-binding pocket and extend the substrate RNA-binding groove of nsp16, consistent with the findings in biochemical assays. These results suggest that nsp16/nsp10 interface may represent a better drug target than the viral MTase active site for developing highly specific anti-coronavirus drugs

    A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease

    Get PDF
    A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function

    The Great American Crime Decline : Possible Explanations

    Get PDF
    This chapter examines the most important features of the crime decline in the United States during the 1990s-2010s but also takes a broader look at the violence declines of the last three centuries. The author argues that violent and property crime trends might have diverged in the 1990s, with property crimes increasingly happening in the online sphere and thus traditional property crime statistics not being reflective of the full picture. An important distinction is made between ‘contact crimes’ and crimes that do not require a victim and offender to be present in the same physical space. Contrary to the uncertainties engendered by property crime, the declines in violent (‘contact’) crime are rather general, and have been happening not only across all demographic and geographic categories within the United States but also throughout the developed world. An analysis of research literature on crime trends has identified twenty-four different explanations for the crime drop. Each one of them is briefly outlined and examined in terms of conceptual clarity and empirical support. Nine crime decline explanations are highlighted as the most promising ones. The majority of these promising explanations, being relative newcomers in the crime trends literature, have not been subjected to sufficient empirical scrutiny yet, and thus require further research. One potentially fruitful avenue for future studies is to examine the association of the most promising crime decline explanations with improvements in self-control

    Non-ionic Thermoresponsive Polymers in Water

    Full text link

    Feast and famine - microbial life in the deep-sea bed.

    No full text
    The seabed is a diverse environment that ranges from the desert-like deep seafloor to the rich oases that are present at seeps, vents, and food falls such as whales, wood or kelp. As well as the sedimentation of organic material from above, geological processes transport chemical energy — hydrogen, methane, hydrogen sulphide and iron — to the seafloor from the subsurface below, which provides a significant proportion of the deep-sea energy. At the sites on the seafloor where chemical energy is delivered, rich and diverse microbial communities thrive. However, most subsurface microorganisms live in conditions of extreme energy limitation, with mean generation times of up to thousands of years. Even in the most remote subsurface habitats, temperature rather than energy seems to set the ultimate limit for life, and in the deep biosphere, where energy is most depleted, life might even be based on the cleavage of water by natural radioisotopes. Here, we review microbial biodiversity and function in these intriguing environments
    corecore