6 research outputs found

    Use of an innovative model to evaluate mobility in seniors with lower-limb amputations of vascular origin: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mobility of older individuals has often been only partially assessed, without considering all important aspects such as potential (available) versus effective (used) mobilities and the physical and psychosocial factors that modulate them. This study proposes a new model for evaluating mobility that considers all important aspects, applied here to lower-limb amputees with vascular origin. This model integrates the concepts of potential mobility (e.g. balance, speed of movement), effective mobility (e.g. life habits, movements in living areas) and factors that modulate these two types of mobility (e.g. strength, sensitivity, social support, depression). The main objective was to characterize potential and effective mobility as well as mobility modulators in a small sample of people with lower-limb amputations of vascular origin with different characteristics. The second objective of this pilot study was to assess the feasibility of measuring all variables in the model in a residential context.</p> <p>Methods</p> <p>An observational and transversal design was used with a heterogeneous sample of 10 participants with a lower-limb amputation of vascular origin, aged 51 to 83, assessed between eight and 18 months after discharge from an acute care hospital. A questionnaire of participant characteristics and 16 reliable and valid measurements were used.</p> <p>Results</p> <p>The results show that the potential mobility indicators do not accurately predict effective mobility, i.e., participants who perform well on traditional measures done in the laboratory or clinic are not always those who perform well in the real world. The model generated 4 different profiles (categories) of participants ranging from reduced to excellent potential mobility and low to excellent effective mobility, and characterized the modulating factors. The evaluations were acceptable in terms of the time taken (three hours) and the overall measurements, with a few exceptions, which were modified to optimize the data collected and the classification of the participants. For the population assessed, the results showed that some of the negative modulators (particularly living alone, no rehabilitation, pain, limited social support, poor muscle strength) played an important role in reducing effective mobility.</p> <p>Conclusion</p> <p>The first use of the model revealed interesting data that add to our understanding of important aspects linked to potential and effective mobility as well as modulators. The feasibility of measuring all variables in the model in a residential context was demonstrated. A study with a large number of participants is now warranted to rigorously characterize mobility levels of lower-limb amputees with vascular origin.</p

    Elastin in vascular grafts

    No full text
    The clinical demand for a superior vascular graft is rising due to the increase in cardiovascular disease with an aging population. Despite decades of research, clinically translatable solutions remain limited. Recent progress in vascular graft engineering has highlighted the significance of biological integration for the success of implanted grafts. Thus there has been an increase in the usage of biological materials in vascular graft manufacture. Elastin, a natural protein that makes up a significant portion of the natural vascular extracellular matrix, has been demonstrated to be particularly important with both mechanical and biological modulatory roles. Progress in understanding elastogenesis, the process by which elastin is naturally synthesized, and increased access to synthetic elastin-based materials, has increased the usage of elastin in vascular graft engineering. In this chapter, we explore recent advances in the utilization of elastin as a material for vascular graft engineering. In particular, we focus on the myriad of methods which incorporate elastin into vascular grafts which demonstrate superior biological functionality and closer resemblance to native blood vessels

    Mechanical Ventilation

    No full text
    corecore