25 research outputs found

    Influence of Primary Care Physician Availability and Socioeconomic Deprivation on Breast Cancer from 1988 to 2008: A Spatio-Temporal Analysis

    Get PDF
    Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer death among women in the United States. It is unclear how county-level primary care physician (PCP) availability and socioeconomic deprivation affect the spatial and temporal variation of breast cancer incidence and mortality.We used the 1988-2008 public-use county-based data from nine Surveillance, Epidemiology, and End Results (SEER) programs to analyze the temporal and spatial disparity of PCP availability and socioeconomic deprivation on early-stage incidence, advanced-stage incidence and breast cancer mortality. The spatio-temporal analysis was implemented by a novel structural additive modeling approach.Greater PCP availability was significantly associated with higher early-stage incidence, advanced-stage incidence and mortality during the entire study period while socioeconomic deprivation was significantly negatively associated with early-stage incidence, advanced-stage incidence, and mortality up to 1992. However, the observed influence of PCP availability and socioeconomic deprivation varied by county.We showed important associations of PCP availability and socioeconomic deprivation with the three breast cancer indicators. However, the effect of these associations varied over time and across counties. The association of PCP availability and socioeconomic deprivation was stronger in selected counties

    Expanding the clinical phenotype of IARS2-related mitochondrial disease.

    Get PDF
    BACKGROUND: IARS2 encodes a mitochondrial isoleucyl-tRNA synthetase, a highly conserved nuclear-encoded enzyme required for the charging of tRNAs with their cognate amino acid for translation. Recently, pathogenic IARS2 variants have been identified in a number of patients presenting broad clinical phenotypes with autosomal recessive inheritance. These phenotypes range from Leigh and West syndrome to a new syndrome abbreviated CAGSSS that is characterised by cataracts, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, and skeletal dysplasia, as well as cataract with no additional anomalies. METHODS: Genomic DNA from Iranian probands from two families with consanguineous parental background and overlapping CAGSSS features were subjected to exome sequencing and bioinformatics analysis. RESULTS: Exome sequencing and data analysis revealed a novel homozygous missense variant (c.2625C > T, p.Pro909Ser, NM_018060.3) within a 14.3 Mb run of homozygosity in proband 1 and a novel homozygous missense variant (c.2282A > G, p.His761Arg) residing in an ~ 8 Mb region of homozygosity in a proband of the second family. Patient-derived fibroblasts from proband 1 showed normal respiratory chain enzyme activity, as well as unchanged oxidative phosphorylation protein subunits and IARS2 levels. Homology modelling of the known and novel amino acid residue substitutions in IARS2 provided insight into the possible consequence of these variants on function and structure of the protein. CONCLUSIONS: This study further expands the phenotypic spectrum of IARS2 pathogenic variants to include two patients (patients 2 and 3) with cataract and skeletal dysplasia and no other features of CAGSSS to the possible presentation of the defects in IARS2. Additionally, this study suggests that adult patients with CAGSSS may manifest central adrenal insufficiency and type II esophageal achalasia and proposes that a variable sensorineural hearing loss onset, proportionate short stature, polyneuropathy, and mild dysmorphic features are possible, as seen in patient 1. Our findings support that even though biallelic IARS2 pathogenic variants can result in a distinctive, clinically recognisable phenotype in humans, it can also show a wide range of clinical presentation from severe pediatric neurological disorders of Leigh and West syndrome to both non-syndromic cataract and cataract accompanied by skeletal dysplasia

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk

    TMEM63C mutations cause mitochondrial morphology defects and underlie hereditary spastic paraplegia.

    Get PDF
    The hereditary spastic paraplegias (HSP) are among the most genetically diverse of all Mendelian disorders. They comprise a large group of neurodegenerative diseases that may be divided into 'pure HSP' in forms of the disease primarily entailing progressive lower-limb weakness and spasticity, and 'complex HSP' when these features are accompanied by other neurological (or non-neurological) clinical signs. Here, we identified biallelic variants in the transmembrane protein 63C (TMEM63C) gene, encoding a predicted osmosensitive calcium-permeable cation channel, in individuals with hereditary spastic paraplegias associated with mild intellectual disability in some, but not all cases. Biochemical and microscopy analyses revealed that TMEM63C is an endoplasmic reticulum-localized protein, which is particularly enriched at mitochondria-endoplasmic reticulum contact sites. Functional in cellula studies indicate a role for TMEM63C in regulating both endoplasmic reticulum and mitochondrial morphologies. Together, these findings identify autosomal recessive TMEM63C variants as a cause of pure and complex HSP and add to the growing evidence of a fundamental pathomolecular role of perturbed mitochondrial-endoplasmic reticulum dynamics in motor neurone degenerative diseases

    Circulating sphingosine-1-phosphate inversely correlates with chemotherapy-induced weight gain during early breast cancer

    No full text
    Weight gain in women receiving chemotherapy for breast cancer is associated with a higher risk of recurrence. Using metabonomic profiling, we recently reported that plasma lactate and alanine were prognostic for weight gain in individuals with breast cancer receiving chemotherapy. The role of lipid second messengers has not been studied. We assessed serum levels of sphingosine-1-phosphate (S1P), a known secreted lipid second messenger with a role in cell growth, in sequential samples from post-menopausal women receiving standard chemotherapy for early breast cancer and correlated these with body mass measurements and metabonomic profiling. While serum S1P levels prior to treatment did not correlate with body weight changes or circulating alanine and lactate, S1P levels measured during therapy were inversely correlated with weight gain (P = 0.04), but not weight loss (P = 0.74) or no change in weight (P = 0.5), suggesting a role of dynamic circulating S1P in adipocyte growth. These data provide evidence for an association between serum S1P and weight gain during chemotherapy cycles in women with breast cancer. Lipid second messengers have a role in chemotherapy-induced weight gain in breast cancer
    corecore