243 research outputs found
Random qubit-states and how best to measure them
We consider the problem of measuring a single qubit, known to have been prepared in either a randomly selected pure state or a randomly selected real pure state. We seek the measurements that provide either the best estimate of the state prepared or maximise the accessible information. Surprisingly, any sensible measurement turns out to be optimal. We discuss the application of these ideas to multiple qubits and higher-dimensional systems
Recommended from our members
An investigation of a quantum probability model for the constructive effect of affective evaluation
The idea that choices can have a constructive effect has received a great deal of empirical support. The act of choosing appears to influence subsequent preferences for the options available. Recent research has proposed a cognitive model based on quantum probability, which suggests that whether or not a participant provides an affective evaluation for a positively or negatively valenced stimulus can also be constructive and so e.g. influence the affective evaluation of a second oppositely valenced stimulus. However, there are some outstanding methodological questions in relation to this previous research. This paper reports the results of three experiments designed to resolve these questions. Experiment 1, using a binary response format, provides partial support for the interaction predicted by the quantum probability model and Experiment 2, which controls for the length of time participants have to respond, fully supports the quantum probability model. Finally, Experiment 3 sought to determine whether the key effect can generalize beyond affective judgements about visual stimuli. Using judgements about the trustworthiness of well-known people, the predictions of the quantum probability model were confirmed. Together these three experiments provide further support for the quantum probability model of the constructive effect of simple evaluations
Why should we care about quantum discord?
Entanglement is a central feature of quantum theory. Mathematical properties
and physical applications of pure state entanglement make it a template to
study quantum correlations. However, an extension of entanglement measures to
mixed states in terms of separability does not always correspond to all the
operational aspects. Quantum discord measures allow an alternative way to
extend the idea of quantum correlations to mixed states. In many cases these
extensions are motivated by physical scenarios and quantum information
protocols. In this chapter we discuss several settings involving correlated
quantum systems, ranging from distributed gates to detectors testing quantum
fields. In each setting we show how entanglement fails to capture the relevant
features of the correlated system, and discuss the role of discord as a
possible alternative.Comment: Written for "Lectures on general quantum correlations and their
applications
Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cu thin films
The outstanding electrical and mechanical properties of graphene make it very
attractive for several applications, Nanoelectronics above all. However a
reproducible and non destructive way to produce high quality, large-scale area,
single layer graphene sheets is still lacking. Chemical Vapour Deposition of
graphene on Cu catalytic thin films represents a promising method to reach this
goal, because of the low temperatures (T < 900 Celsius degrees) involved during
the process and of the theoretically expected monolayer self-limiting growth.
On the contrary such self-limiting growth is not commonly observed in
experiments, thus making the development of techniques allowing for a better
control of graphene growth highly desirable. Here we report about the local
ablation effect, arising in Raman analysis, due to the heat transfer induced by
the laser incident beam onto the graphene sample.Comment: v1:9 pages, 8 figures, submitted to SpringerPlus; v2: 11 pages,
PDFLaTeX, 9 figures, revised peer-reviewed version resubmitted to
SpringerPlus; 1 figure added, figure 1 and 4 replaced,typos corrected,
"Results and discussion" section significantly extended to better explain
etching mechanism and features of Raman spectra, references adde
Quantum Correlations in NMR systems
In conventional NMR experiments, the Zeeman energy gaps of the nuclear spin
ensembles are much lower than their thermal energies, and accordingly exhibit
tiny polarizations. Generally such low-purity quantum states are devoid of
quantum entanglement. However, there exist certain nonclassical correlations
which can be observed even in such systems. In this chapter, we discuss three
such quantum correlations, namely, quantum contextuality, Leggett-Garg temporal
correlations, and quantum discord. In each case, we provide a brief theoretical
background and then describe some results from NMR experiments.Comment: 21 pages, 7 figure
Habitat fragmentation and the future structure of tree assemblages in a fragmented Atlantic forest landscape
The biodiversity value of human-modified landscapes has become a central question in the tropical forest conservation biology, yet the degree to which plant populations and communities are restructured in response to environmental change remains unclear. Here, we address tree species density in a fragmented Atlantic forest landscape to test the hypothesis that tree assemblages inhabiting edge-dominated forest habitats approach typical conditions of early successional systems. Seedlings and adults from 141 tree species were sampled across 39 0.1-ha plots: 19 in small fragments (55 % of all tree species exhibiting higher densities in small fragments than in mature forest, particularly pioneers (>60 % of all species). Seedlings and adults of these proliferating species differed from species exhibiting population declines in terms of wood density and seed size, respectively. Additionally, pioneers were more abundant than shade-tolerant species, as were hardwood species in the case of seedlings. Tree species showing highest population increases consisted largely of long-lived, light-demanding canopy species bearing soft or hardwood and small-to-medium-sized seeds. Tree assemblage structure also differed in terms of forest habitats with small forest fragments supporting few rare species, whereas the most rapidly proliferating species were much more widespread and abundant in fragments. However, 60 % of all adult pioneer species recorded in small fragments were not recorded as seedlings in this habitat type, although both seedling and adult assemblages were dominated by pioneer species. Edge-dominated tree assemblages are likely to experience long-term shifts toward greater dominance of long-lived, pioneer canopy species
Engineering of quantum dot photon sources via electro-elastic fields
The possibility to generate and manipulate non-classical light using the
tools of mature semiconductor technology carries great promise for the
implementation of quantum communication science. This is indeed one of the main
driving forces behind ongoing research on the study of semiconductor quantum
dots. Often referred to as artificial atoms, quantum dots can generate single
and entangled photons on demand and, unlike their natural counterpart, can be
easily integrated into well-established optoelectronic devices. However, the
inherent random nature of the quantum dot growth processes results in a lack of
control of their emission properties. This represents a major roadblock towards
the exploitation of these quantum emitters in the foreseen applications. This
chapter describes a novel class of quantum dot devices that uses the combined
action of strain and electric fields to reshape the emission properties of
single quantum dots. The resulting electro-elastic fields allow for control of
emission and binding energies, charge states, and energy level splittings and
are suitable to correct for the quantum dot structural asymmetries that usually
prevent these semiconductor nanostructures from emitting polarization-entangled
photons. Key experiments in this field are presented and future directions are
discussed.Comment: to appear as a book chapter in a compilation "Engineering the
Atom-Photon Interaction" published by Springer in 2015, edited by A.
Predojevic and M. W. Mitchel
- …