8 research outputs found

    Spatiotemporal neural characterization of prediction error valence and surprise during reward learning in humans

    Get PDF
    Reward learning depends on accurate reward associations with potential choices. These associations can be attained with reinforcement learning mechanisms using a reward prediction error (RPE) signal (the difference between actual and expected rewards) for updating future reward expectations. Despite an extensive body of literature on the influence of RPE on learning, little has been done to investigate the potentially separate contributions of RPE valence (positive or negative) and surprise (absolute degree of deviation from expectations). Here, we coupled single-trial electroencephalography with simultaneously acquired fMRI, during a probabilistic reversal-learning task, to offer evidence of temporally overlapping but largely distinct spatial representations of RPE valence and surprise. Electrophysiological variability in RPE valence correlated with activity in regions of the human reward network promoting approach or avoidance learning. Electrophysiological variability in RPE surprise correlated primarily with activity in regions of the human attentional network controlling the speed of learning. Crucially, despite the largely separate spatial extend of these representations our EEG-informed fMRI approach uniquely revealed a linear superposition of the two RPE components in a smaller network encompassing visuo mnemonic and reward areas. Activity in this network was further predictive of stimulus value updating indicating a comparable contribution of both signals to reward learning

    Maternal interpersonal affiliation is associated with adolescents’ brain structure and reward processing

    Get PDF
    Considerable animal and human research has been dedicated to the effects of parenting on structural brain development, focusing on hippocampal and prefrontal areas. Conversely, although functional imaging studies suggest that the neural reward circuitry is involved in parental affection, little is known about mothers' interpersonal qualities in relation to their children's brain structure and function. Moreover, gender differences concerning the effect of maternal qualities have rarely been investigated systematically. In 63 adolescents, we assessed structural and functional magnetic resonance imaging as well as interpersonal affiliation in their mothers. This allowed us to associate maternal affiliation with gray matter density and neural responses during different phases of the well-established Monetary Incentive Delay task. Maternal affiliation was positively associated with hippocampal and orbitofrontal gray matter density. Moreover, in the feedback of reward hit as compared with reward miss, an association with caudate activation was found. Although no significant gender effects were observed in these associations, during reward feedback as compared with baseline, maternal affiliation was significantly associated with ventral striatal and caudate activation only in females. Our findings demonstrate that maternal interpersonal affiliation is related to alterations in both the brain structure and reward-related activation in healthy adolescents. Importantly, the pattern is in line with typical findings in depression and post-traumatic stress disorder, suggesting that a lack of maternal affiliation might have a role in the genesis of mental disorders

    Ovarium, Hypophyse, Placenta und Schwangerschaft in ihrer innersekretorischen Beziehung zur Frauenheilkunde

    Full text link
    corecore