141 research outputs found
Graphene Photonics and Optoelectronics
The richness of optical and electronic properties of graphene attracts
enormous interest. Graphene has high mobility and optical transparency, in
addition to flexibility, robustness and environmental stability. So far, the
main focus has been on fundamental physics and electronic devices. However, we
believe its true potential to be in photonics and optoelectronics, where the
combination of its unique optical and electronic properties can be fully
exploited, even in the absence of a bandgap, and the linear dispersion of the
Dirac electrons enables ultra-wide-band tunability. The rise of graphene in
photonics and optoelectronics is shown by several recent results, ranging from
solar cells and light emitting devices, to touch screens, photodetectors and
ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
Drug-eluting stents appear superior to bare metal stents for vein-graft PCI in vessels up to a stent diameter of 4 mm.
BACKGROUND: Research trials have shown improved short-term outcome with drug-eluting stents (DES) over bare metal stents (BMS) in saphenous vein graft (SVG) percutaneous coronary intervention (PCI), primarily by reducing target vessel revascularization (TVR) for in-stent restenosis. We compared the outcomes in patients undergoing SVG stent implantation treated with DES or BMS. In exploratory analyses we investigated the influence of stent generation and diameter. METHODS: Data were obtained from a prospective database of 657 patients who underwent PCI for SVG lesions between 2003 and 2011. A total of 344 patients had PCI with BMS and 313 with DES. Propensity scores were developed based on 15 observed baseline covariates in a logistic regression model with stent type as the dependent variable. The nearest-neighbour-matching algorithm with Greedy 5-1 Digit Matching was used to produce two patient cohorts of 313 patients each. We assessed major adverse cardiac events (MACE) out to a median of 3.3 years (interquartile range: 2.1-4.1). MACE was defined as all-cause mortality, myocardial infarction (MI), TVR and stroke. RESULTS: There was a significant difference in MACE between the two groups in favour of DES (17.9% DES vs. 31.2% BMS group; p = 0.0017) over the 5-year follow-up period. MACE was driven by increased TVR in the BMS group. There was no difference in death, MI or stroke. Adjusted Cox analysis confirmed a decreased risk of MACE for DES compared with BMS 0.75 (95% confidence interval (CI) 0.52-0.94), with no difference in the hazard of all-cause mortality (hazard ratio: 1.08; 95% CI: 0.77-1.68). However, when looking at stent diameters greater than 4 mm, no difference was seen in MACE rates between BMS and DES. CONCLUSIONS: Overall in our cohort of patients who had PCI for SVG disease, DES use resulted in lower MACE rates compared with BMS over a 5-year follow-up period; however, for stent diameters over 4 mm no difference in MACE rates was seen
Cost-effectiveness analysis of PCR for the rapid diagnosis of pulmonary tuberculosis
<p>Abstract</p> <p>Background</p> <p>Tuberculosis is one of the most prominent health problems in the world, causing 1.75 million deaths each year. Rapid clinical diagnosis is important in patients who have co-morbidities such as Human Immunodeficiency Virus (HIV) infection. Direct microscopy has low sensitivity and culture takes 3 to 6 weeks <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr><abbr bid="B3">3</abbr></abbrgrp>. Therefore, new tools for TB diagnosis are necessary, especially in health settings with a high prevalence of HIV/TB co-infection.</p> <p>Methods</p> <p>In a public reference TB/HIV hospital in Brazil, we compared the cost-effectiveness of diagnostic strategies for diagnosis of pulmonary TB: Acid fast bacilli smear microscopy by Ziehl-Neelsen staining (AFB smear) plus culture and AFB smear plus colorimetric test (PCR dot-blot).</p> <p>From May 2003 to May 2004, sputum was collected consecutively from PTB suspects attending the Parthenon Reference Hospital. Sputum samples were examined by AFB smear, culture, and PCR dot-blot. The gold standard was a positive culture combined with the definition of clinical PTB. Cost analysis included health services and patient costs.</p> <p>Results</p> <p>The AFB smear plus PCR dot-blot require the lowest laboratory investment for equipment (US 5,635,760 versus US 50,773 and US 374,778,045 and US$ 110,849,055, respectively.</p> <p>Conclusion</p> <p>AFB smear associated with PCR dot-blot associated has the potential to be a cost-effective tool in the fight against PTB for patients attended in the TB/HIV reference hospital.</p
Genetic polymorphisms in the cyclooxygenase-2 gene, use of nonsteroidal anti-inflammatory drugs, and breast cancer risk
INTRODUCTION: The association between use of nonsteroidal anti-inflammatory drugs (NSAIDs) and breast cancer risk remains unclear. Inconsistencies in previously reported findings may be partly due to differences in expression of cyclooxygenase (COX)-2. We hypothesized that genetic polymorphisms (COX-2 .926, COX-2 .5209, and COX-2 .8473) may reduce overall breast cancer risk or risk for subtypes of breast cancer by modulating the inflammatory response and may interact with aspirin or any NSAID use. METHODS: We conducted a population-based, case-control study in which we genotyped 1,067 breast cancer cases and 1,110 control individuals included in the Long Island Breast Cancer Study Project. RESULTS: No major effects of the three COX-2 variant alleles on breast cancer risk were found. A total of eight distinct haplotypes and 18 diplotypes were observed in the population. Overall, no significant associations between COX-2 haplotypes/diplotypes and breast cancer risk were observed. Among women who used aspirin or any NSAID there was little evidence for an interaction with the at-risk COX-2 genotypes, with one exception. Among women with hormone receptor positive breast cancer, the reduced risk for any NSAID use was only evident among those who had at least one variant C allele of COX-2 .8473 (odds ratio = 0.7, 95% confidence interval = 0.5 to 1.0; P for the interaction = 0.02). There was no corresponding interaction for aspirin use, possibly because of limited power. CONCLUSION: These data provide modest evidence that the C allele of COX-2 .8473 may interact with NSAIDs to reduce risk for hormone receptor positive breast cancer
Ih Current Is Necessary to Maintain Normal Dopamine Fluctuations and Sleep Consolidation in Drosophila
HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep∶activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest∶activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels
Preclinical mouse models for BRCA1-associated breast cancer
A substantial part of all hereditary breast cancer cases is caused by BRCA1 germline mutations. In this review, we will discuss the insights into BRCA1 functions that we obtained from mouse models with conventional and conditional mutations in Brca1. The most advanced models closely resemble human BRCA1-related breast cancer and may therefore be useful for addressing clinically relevant questions
- …