11 research outputs found
Staging investigations for oesophageal cancer: a meta-analysis
The aim of the study was to compare the diagnostic performance of endoscopic ultrasonography (EUS), computed tomography (CT), and 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in staging of oesophageal cancer. PubMed was searched to identify English-language articles published before January 2006 and reporting on diagnostic performance of EUS, CT, and/or FDG-PET in oesophageal cancer patients. Articles were included if absolute numbers of true-positive, false-negative, false-positive, and true-negative test results were available or derivable for regional, celiac, and abdominal lymph node metastases and/or distant metastases. Sensitivities and specificities were pooled using a random effects model. Summary receiver operating characteristic analysis was performed to study potential effects of study and patient characteristics. Random effects pooled sensitivities of EUS, CT, and FDG-PET for regional lymph node metastases were 0.80 (95% confidence interval 0.75–0.84), 0.50 (0.41–0.60), and 0.57 (0.43–0.70), respectively, and specificities were 0.70 (0.65–0.75), 0.83 (0.77–0.89), and 0.85 (0.76–0.95), respectively. Diagnostic performance did not differ significantly across these tests. For detection of celiac lymph node metastases by EUS, sensitivity and specificity were 0.85 (0.72–0.99) and 0.96 (0.92–1.00), respectively. For abdominal lymph node metastases by CT, these values were 0.42 (0.29–0.54) and 0.93 (0.86–1.00), respectively. For distant metastases, sensitivity and specificity were 0.71 (0.62–0.79) and 0.93 (0.89–0.97) for FDG-PET and 0.52 (0.33–0.71) and 0.91 (0.86–0.96) for CT, respectively. Diagnostic performance of FDG-PET for distant metastases was significantly higher than that of CT, which was not significantly affected by study and patient characteristics. The results suggest that EUS, CT, and FDG-PET each play a distinctive role in the detection of metastases in oesophageal cancer patients. For the detection of regional lymph node metastases, EUS is most sensitive, whereas CT and FDG-PET are more specific tests. For the evaluation of distant metastases, FDG-PET has probably a higher sensitivity than CT. Its combined use could however be of clinical value, with FDG-PET detecting possible metastases and CT confirming or excluding their presence and precisely determining the location(s)
Formation of plateau landscapes on glaciated continental margins
Low-relief plateaus separated by deeply incised fjords are hallmarks of glaciated, passive continental margins. Spectacular examples fringe the once ice-covered North Atlantic coasts of Greenland, Norway and Canada, but low-relief plateau landscapes also underlie present-day ice sheets in Antarctica and Greenland. Dissected plateaus have long been viewed as the outcome of selective linear erosion by ice sheets that focus incision in glacial troughs, leaving the intervening landscapes essentially unaffected. According to this hypothesis, the plateaus are remnants of preglacial low-relief topography. However, here we use computational experiments to show that, like fjords, plateaus are emergent properties of long-term ice-sheet erosion. Ice sheets can either increase or decrease subglacial relief depending on the wavelength of the underlying topography, and plateau topography arises dynamically from evolving feedbacks between topography, ice dynamics and erosion over million-year timescales. This new mechanistic explanation for plateau formation opens the possibility of plateaus contributing significantly to accelerated sediment flux at the onset of the late Cenozoic glaciations, before becoming stable later in the Quaternary