760 research outputs found

    The Circum-Galactic Environment of Bright IRAS Galaxies

    Get PDF
    This paper studies systematically, for the first time, the circumgalactic environment of bright IRAS galaxies as defined by Soifer et al. (1989). While the role of gravitational interaction for luminous and ultraluminous IRAS galaxies has been well established by various studies, the situation is by far more obscure in the IR luminosity range of the bright IRAS sample, 10^{10}Lsol < Lfir < 10^{11} Lsol. To easily identify nearby companion galaxies, the bright IRAS sample was restricted to 87 objects with redshift range 0.008 < z < 0.018 and galactic latitude > 30^{o}. A control sample, selected from the Center for Astrophysics redshift survey catalogue, includes 90 objects matching the Bright IRAS sample for distribution of isophotal diameter, redshift, and morphological type. From a search of nearby companion galaxies within 250 Kpc on the second-generation Digitized Sky Survey (DSS-II), we found that the circumgalactic environment of the Bright IRAS galaxies contains more large companions than the galaxies in the optically selected control sample, and is similar to that of Seyfert 2 galaxies. We found a weak correlation over a wide range of far IR luminosity (10^9 Lsol < Lfir < 10^{12.5}Lsol) between projected separation and Lfir, which confirms a very close relationship between star formation rate of a galaxy and the strength of gravitational perturbations. We also find that the far IR colors depend on whether a source is isolated or interacting. Finally, we discuss the intrinsic difference and evolution expectations for the bright IRAS galaxies and the control sample, as well as the relationship between starbursting and active galaxies.Comment: 10 pages, 5 figs, 2 tables. Accepted for publication in Ap

    Active Galactic Nuclei in Void Regions

    Full text link
    We present a comprehensive study of accretion activity in the most underdense environments in the universe, the voids, based on the SDSS DR2 data. Based on investigations of multiple void regions, we show that AGN's occurrence rate and properties differ from those in walls. AGN are more common in voids than in walls, but only among moderately luminous and massive galaxies (M_r < -20, log M_*/M_sun < 10.5), and this enhancement is more pronounced for the weakly accreting systems (i.e., L_[O III] < 10^39 erg/s). Void AGN hosted by moderately massive and luminous galaxies are accreting at equal or lower rates than their wall counterparts, show less obscuration than in walls, and similarly aged stellar populations. The very few void AGN in massive bright hosts accrete more strongly, are more obscured, and are associated with younger stellar emission than wall AGN. Thus, accretion strength is probably connected to the availability of fuel supply, and accretion and star-formation co-evolve and rely on the same source of fuel. Nearest neighbor statistics indicate that the weak accretion activity (LINER-like) is not influenced by the local environment. However, H IIs, Seyferts, and Transition objects prefer more grouped small scale structures, indicating that the rate at which galaxies interact with each other affects their activity. These trends support a potential H II -> Seyfert/Transition Object -> LINER evolutionary sequence that we show is apparent in many properties of actively line-emitting galaxies, in both voids and walls. The subtle differences between void and wall AGN might be explained by a longer, less disturbed duty cycle of these systems in voids.Comment: 19 pages, 7 figures (1 color); to appear in ApJ, submitted on May 11, 200

    NGC 1300 Dynamics: I. The gravitational potential as a tool for detailed stellar dynamics

    Full text link
    In a series of papers we study the stellar dynamics of the grand design barred-spiral galaxy NGC~1300. In the first paper of this series we estimate the gravitational potential and we give it in a form suitable to be used in dynamical studies. The estimation is done directly from near-infrared observations. Since the 3D distribution of the luminous matter is unknown, we construct three different general models for the potential corresponding to three different assumptions for the geometry of the system, representing limiting cases. A pure 2D disc, a cylindrical geometry (thick disc) and a third case, where a spherical geometry is assumed to apply for the major part of the bar. For the potential of the disc component on the galactic plane a Fourier decomposition method is used, that allows us to express it as a sum of trigonometric terms. Both even and odd components are considered, so that the estimated potential accounts also for the observed asymmetries in the morphology. For the amplitudes of the trigonometric terms a smoothed cubic interpolation scheme is used. The total potential in each model may include two additional terms (Plummer spheres) representing a central mass concentration and a dark halo component, respectively. In all examined models, the relative force perturbation points to a strongly nonlinear gravitational field, which ranges from 0.45 to 0.8 of the axisymmetric background with the pure 2D being the most nonlinear one. We present the topological distributions of the stable and unstable Lagrangian points as a function of the pattern speed (Ωp)(\Omega_p). In all three models there is a range of Ωp\Omega_p values, where we find multiple stationary points whose stability affects the overall dynamics of the system.Comment: 14 pages, 11 figures, published in MNRA

    UGC 3995: A Close Pair of Spiral Galaxies

    Get PDF
    UGC 3995 is a close pair of spiral galaxies whose eastern component hosts a Seyfert 2 nucleus. We present a detailed analysis of this system using long slit spectroscopy and narrow (\ha + \nii) as well as broad band (B, R) imaging and an archive WFPC2 image. The component galaxies reveal surprisingly small signs of interaction considering their spatial proximity and almost identical recession velocities, as the bright filament is probably an optical illusion due to the superposition of the bar of the Seyfert galaxy and of the spiral arms of the companion. The broad band morphology, a B--R color map, and a continuum-subtracted \ha + \nii image demonstrate that the western component UGC 3995B is in front of the Seyfert-hosting component UGC 3995A, partly obscuring its western side. The small radial velocity difference leaves the relative motion of the two galaxies largely unconstrained. The observed lack of major tidal deformations, along with some morphological peculiarities, suggests that the galaxies are proximate in space but may have recently approached each other on the plane of the sky. The geometry of the system and the radial velocity curve at P. A. = 106 suggest that the encounter may be retrograde or, alternatively, prograde before perigalacticon. The partial overlap of the two galaxies allows us to estimate the optical thickness of the disk of component B. We derive an extinction = 0.18 visual magnitudes in the infra-arms parts of the foreground galaxy disk, and >= 1-1.5 visual magnitudes in correspondence of the spiral arms.Comment: Accepted for publication in the Astronomical Journal (June 1999 issue

    Connecting Galaxy Evolution, Star Formation and the X-ray Background

    Full text link
    As a result of deep hard X-ray observations by Chandra and XMM-Newton a significant fraction of the cosmic X-ray background (CXRB) has been resolved into individual sources. These objects are almost all active galactic nuclei (AGN) and optical followup observations find that they are mostly obscured Type 2 AGN, have Seyfert-like X-ray luminosities (i.e., L_X ~ 10^{43-44} ergs s^{-1}), and peak in redshift at z~0.7. Since this redshift is similar to the peak in the cosmic star-formation rate, this paper proposes that the obscuring material required for AGN unification is regulated by star-formation within the host galaxy. We test this idea by computing CXRB synthesis models with a ratio of Type 2/Type 1 AGN that is a function of both z and 2-10 keV X-ray luminosity, L_X. The evolutionary models are constrained by parameterizing the observed Type 1 AGN fractions from the recent work by Barger et al. The parameterization which simultaneously best accounts for Barger's data, the CXRB spectrum and the X-ray number counts has a local, low-L_X Type 2/Type 1 ratio of 4, and predicts a Type 2 AGN fraction which evolves as (1+z)^{0.3}. Models with no redshift evolution yielded much poorer fits to the Barger Type 1 AGN fractions. This particular evolution predicts a Type 2/Type 1 ratio of 1-2 for log L_X > 44, and thus the deep X-ray surveys are missing about half the obscured AGN with these luminosities. These objects are likely to be Compton thick. Overall, these calculations show that the current data strongly supports a change to the AGN unification scenario where the obscuration is connected with star formation in the host galaxy rather than a molecular torus alone. The evolution of the obscuration implies a close relationship between star formation and AGN fueling, most likely due to minor mergers or interactions.Comment: 36 pages, 8 figures, ApJ in press. Minor changes to match published versio

    The Close Environment of Seyfert Galaxies and Its Implication for Unification Models

    Get PDF
    This paper presents a statistical analysis of the circumgalactic environment of nearby Seyfert galaxies based on a computer-aided search of companion galaxies on the Digitized Sky Survey (DSS). An intrinsic difference between the environment of Seyfert 1 and Seyfert 2 galaxies, suggested by previous work, is confirmed as statistically significant. For Seyfert 2 galaxies we find a significant excess of large companions (diameter of companion >= 10 Kpc) within a search radius <= 100 Kpc of projected linear distance, as well as within a search radius equal to three times the diameter \ds of each Seyfert galaxy. For Seyfert 1 galaxies there is no clear evidence of any excess of companion galaxies neither within 100 Kpc, nor within 3\ds. For all samples the number of companions suggests a markedly non-Poissonian distribution for galaxies on scales <= 100 Kpc. This difference in environment is not compatible with the simplest formulation of the Unification Model for Seyferts: both types 1 and 2 should be intrinsicaly alike, the only difference being due to orientation of an obscuring torus. We propose an alternative formulation.Comment: 1 figure, accepted for publication in Astrophysical Journal Letter

    The Kinematically Measured Pattern Speeds of NGC 2523 and NGC 4245

    Full text link
    We have applied the Tremaine-Weinberg continuity equation method to derive the bar pattern speed in the SB(r)b galaxy NGC 2523 and the SB(r)0/a galaxy NGC 4245 using the Calcium Triplet absorption lines. These galaxies were selected because they have strong inner rings which can be used as independent tracers of the pattern speed. The pattern speed of NGC 2523 is 26.4 ±\pm 6.1 km s−1^{-1} kpc−1^{-1}, assuming an inclination of 49.7∘^{\circ} and a distance of 51.0 Mpc. The pattern speed of NGC 4245 is 75.5 ±\pm 31.3 km s−1^{-1} kpc−1^{-1}, assuming an inclination of 35.4∘^{\circ} and a distance of 12.6 Mpc. The ratio of the corotation radius to the bar radius of NGC 2523 and NGC 4245 is 1.4 ±\pm 0.3 and 1.1 ±\pm 0.5, respectively. These values place the bright inner rings near and slightly inside the corotation radius, as predicted by barred galaxy theory. Within the uncertainties, both galaxies are found to have fast bars that likely indicate dark halos of low central concentration. The photometric properties, bar strengths, and disk stabilities of both galaxies are also discussed.Comment: Accepted for publication in The Astronomical Journal, 11 figures, 2 table

    Comparison of bar strengths in active and non-active galaxies

    Full text link
    Bar strengths are compared between active and non-active galaxies for a sample of 43 barred galaxies. The relative bar torques are determined using a new technique (Buta and Block 2001), where maximum tangential forces are calculated in the bar region, normalized to the axisymmetric radial force field. We use JHK images of the 2 Micron All Sky Survey. We show a first clear empirical indication that the ellipticies of bars are correlated with the non-axisymmetric forces in the bar regions. We found that nuclear activity appears preferentially in those early type galaxies in which the maximum bar torques are weak and appear at quite large distances from the galactic center. Most suprisingly the galaxies with the strongest bars are non-active. Our results imply that the bulges may be important for the onset of nuclear activity, but that the correlation between the nuclear activity and the early type galaxies is not straightforward.Comment: MNRAS macro in tex format, 9 pages, 10 figure

    Rings and bars: unmasking secular evolution of galaxies

    Full text link
    Secular evolution gradually shapes galaxies by internal processes, in contrast to early cosmological evolution which is more rapid. An important driver of secular evolution is the flow of gas from the disk into the central regions, often under the influence of a bar. In this paper, we review several new observational results on bars and nuclear rings in galaxies. They show that these components are intimately linked to each other, and to the properties of their host galaxy. We briefly discuss how upcoming observations, e.g., imaging from the Spitzer Survey of Stellar Structure in Galaxies (S4G), will lead to significant further advances in this area of research.Comment: Invited review at "Galaxies and their Masks", celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I. Puerari; minor change

    NGC 1300 Dynamics: III. Orbital analysis

    Full text link
    We present the orbital analysis of four response models, that succeed in reproducing morphological features of NGC 1300. Two of them assume a planar (2D) geometry with Ωp\Omega_p=22 and 16 \ksk respectively. The two others assume a cylindrical (thick) disc and rotate with the same pattern speeds as the 2D models. These response models reproduce most successfully main morphological features of NGC 1300 among a large number of models, as became evident in a previous study. Our main result is the discovery of three new dynamical mechanisms that can support structures in a barred-spiral grand design system. These mechanisms are presented in characteristic cases, where these dynamical phenomena take place. They refer firstly to the support of a strong bar, of ansae type, almost solely by chaotic orbits, then to the support of spirals by chaotic orbits that for a certain number of pat tern revolutions follow an n:1 (n=7,8) morphology, and finally to the support of spiral arms by a combination of orbits trapped around L4,5_{4,5} and sticky chaotic orbits with the same Jacobi constant. We have encountered these dynamical phenomena in a large fraction of the cases we studied as we varied the parameters of our general models, without forcing in some way their appearance. This suggests that they could be responsible for the observed morphologies of many barred-spiral galaxies. Comparing our response models among themselves we find that the NGC 130 0 morphology is best described by a thick disc model for the bar region and a 2D disc model for the spirals, with both components rotating with the same pattern speed Ωp\Omega_p=16 \ksk !. In such a case, the whole structure is included inside the corotation of the system. The bar is supported mainly by regular orbits, while the spirals are supported by chaotic orbits.Comment: 18 pages, 32 figures, accepted for publication in MNRA
    • 

    corecore