8,723 research outputs found

    A Lefschetz fixed point formula for symplectomorphisms

    Full text link
    Consider a compact K\"ahler manifold endowed with a prequantum bundle. Following the geometric quantization scheme, the associated quantum spaces are the spaces of holomorphic sections of the tensor powers of the prequantum bundle. In this paper we construct an asymptotic representation of the prequantum bundle automorphism group in these quantum spaces. We estimate the characters of these representations under some transversality assumption. The formula obtained generalizes in some sense the Lefschetz fixed point formula for the automorphisms of the prequantum bundle preserving its holomorphic structure. Our results will be applied in two forthcoming papers to the quantum representation of the mapping class group.Comment: 23 page

    On the quantization of polygon spaces

    Get PDF
    Moduli spaces of polygons have been studied since the nineties for their topological and symplectic properties. Under generic assumptions, these are symplectic manifolds with natural global action-angle coordinates. This paper is concerned with the quantization of these manifolds and of their action coordinates. Applying the geometric quantization procedure, one is lead to consider invariant subspaces of a tensor product of irreducible representations of SU(2). These quantum spaces admit natural sets of commuting observables. We prove that these operators form a semi-classical integrable system, in the sense that they are Toeplitz operators with principal symbol the square of the action coordinates. As a consequence, the quantum spaces admit bases whose vectors concentrate on the Lagrangian submanifolds of constant action. The coefficients of the change of basis matrices can be estimated in terms of geometric quantities. We recover this way the already known asymptotics of the classical 6j-symbols

    Knot state asymptotics I, AJ Conjecture and abelian representations

    Get PDF
    Consider the Chern-Simons topological quantum field theory with gauge group SU(2) and level k. Given a knot in the 3-sphere, this theory associates to the knot exterior an element in a vector space. We call this vector the knot state and study its asymptotic properties when the level is large. The latter vector space being isomorphic to the geometric quantization of the SU(2)-character variety of the peripheral torus, the knot state may be viewed as a section defined over this character variety. We first conjecture that the knot state concentrates in the large level limit to the character variety of the knot. This statement may be viewed as a real and smooth version of the AJ conjecture. Our second conjecture says that the knot state in the neighborhood of abelian representations is a Lagrangian state. Using microlocal techniques, we prove these conjectures for the figure eight and torus knots. The proof is based on q-difference relations for the colored Jones polynomial. We also provide a new proof for the asymptotics of the Witten-Reshetikhin-Turaev invariant of the lens spaces and a derivation of the Melvin-Morton-Rozansky theorem from the two conjectures.Comment: 47 pages, 2 figure
    • …
    corecore