130 research outputs found
Observed NO/NO2 Ratios in the Upper Troposphere Imply Errors in NO-NO2-O3 Cycling Kinetics or an Unaccounted NOx Reservoir
Observations from the SEAC4RS aircraft campaign over the southeast United States in August-September 2013 show NO/NO2 concentration ratios in the upper troposphere that are approximately half of photochemical equilibrium values computed from Jet Propulsion Laboratory (JPL) kinetic data. One possible explanation is the presence of labile NOx reservoir species, presumably organic, decomposing thermally to NO2 in the instrument. The NO2 instrument corrects for this artifact from known labile HNO4 and CH3O2NO2 NOx reservoirs. To bridge the gap between measured and simulated NO2, additional unaccounted labile NOx reservoir species would have to be present at a mean concentration of ~40 ppt for the SEAC4RS conditions (compared with 197 ppt for NOx). An alternative explanation is error in the low-temperature rate constant for the NO + O3 reaction (30% 1-σ uncertainty in JPL at 240 K) and/or in the spectroscopic data for NO2 photolysis (20% 1-σ uncertainty). Resolving this discrepancy is important for understanding global budgets of tropospheric oxidants and for interpreting satellite observations of tropospheric NO2 columns
Observed NO/NO_2 Ratios in the Upper Troposphere Imply Errors in NO-NO_2-O_3 Cycling Kinetics or an Unaccounted NO_x Reservoir
Observations from the SEAC^4RS aircraft campaign over the southeast United States in August–September 2013 show NO/NO_2 concentration ratios in the upper troposphere that are approximately half of photochemical equilibrium values computed from Jet Propulsion Laboratory (JPL) kinetic data. One possible explanation is the presence of labile NO_x reservoir species, presumably organic, decomposing thermally to NO_2 in the instrument. The NO_2 instrument corrects for this artifact from known labile HNO_4 and CH_3O_2NO_2 NO_x reservoirs. To bridge the gap between measured and simulated NO_2, additional unaccounted labile NO_x reservoir species would have to be present at a mean concentration of ~40 ppt for the SEAC^4RS conditions (compared with 197 ppt for NOx). An alternative explanation is error in the low‐temperature rate constant for the NO + O_3 reaction (30% 1‐σ uncertainty in JPL at 240 K) and/or in the spectroscopic data for NO_2 photolysis (20% 1‐σ uncertainty). Resolving this discrepancy is important for understanding global budgets of tropospheric oxidants and for interpreting satellite observations of tropospheric NO_2 columns
Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer
<p>Aims: DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. In addition, DDX3 was shown to be a direct downstream target of HIF-1α (the master regulatory of the hypoxia response) in breast cancer cell lines. However, the relation between DDX3 and hypoxia has not been addressed in human tumors. In this paper, we studied the relation between DDX3 and the hypoxic responsive proteins in human breast cancer.</p>
<p>Methods and Results: DDX3 expression was investigated by immunohistochemistry in breast cancer in comparison with hypoxia related proteins HIF-1α, GLUT1, CAIX, EGFR, HER2, Akt1, FOXO4, p53, ERα, COMMD1, FER kinase, PIN1, E-cadherin, p21, p27, Transferrin receptor, FOXO3A, c-Met and Notch1. DDX3 was overexpressed in 127 of 366 breast cancer patients, and was correlated with overexpression of HIF-1α and its downstream genes CAIX and GLUT1. Moreover, DDX3 expression correlated with hypoxia-related proteins EGFR, HER2, FOXO4, ERα and c-Met in a HIF-1α dependent fashion, and with COMMD1, FER kinase, Akt1, E-cadherin, TfR and FOXO3A independent of HIF-1α.</p>
<p>Conclusions: In invasive breast cancer, expression of DDX3 was correlated with overexpression of HIF-1α and many other hypoxia related proteins, pointing to a distinct role for DDX3 under hypoxic conditions and supporting the oncogenic role of DDX3 which could have clinical implication for current development of DDX3 inhibitors.</p>
Lightning NO_x Emissions: Reconciling Measured and Modeled Estimates With Updated NO_x Chemistry
Lightning is one of the most important sources of upper tropospheric NO_x; however, there is a large spread in estimates of the global emission rates (2–8 Tg N yr^(−1)). We combine upper tropospheric in situ observations from the Deep Convective Clouds and Chemistry (DC3) experiment and global satellite-retrieved NO_2 tropospheric column densities to constrain mean lightning NO_x (LNO_x) emissions per flash. Insights from DC3 indicate that the NO_x lifetime is ~3 h in the region of outflow of thunderstorms, mainly due to production of methyl peroxy nitrate and alkyl and multifunctional nitrates. The lifetime then increases farther downwind from the region of outflow. Reinterpreting previous analyses using the 3 h lifetime reduces the spread among various methods that have been used to calculate mean LNO_x emissions per flash and indicates a global LNO_x emission rate of ~9 Tg N yr^(−1), a flux larger than the high end of recent estimates
Time-averaged wavefront analysis demonstrates preferential pathways of atrial fibrillation, predicting pulmonary vein isolation acute response
Electrical activation during atrial fibrillation (AF) appears chaotic and disorganised, which impedes characterisation of the underlying substrate and treatment planning. While globally chaotic, there may be local preferential activation pathways that represent potential ablation targets. This study aimed to identify preferential activation pathways during AF and predict the acute ablation response when these are targeted by pulmonary vein isolation (PVI). In patients with persistent AF (n = 14), simultaneous biatrial contact mapping with basket catheters was performed pre-ablation and following each ablation strategy (PVI, roof, and mitral lines). Unipolar wavefront activation directions were averaged over 10 s to identify preferential activation pathways. Clinical cases were classified as responders or non-responders to PVI during the procedure. Clinical data were augmented with a virtual cohort of 100 models. In AF pre-ablation, pathways originated from the pulmonary vein (PV) antra in PVI responders (7/7) but not in PVI non-responders (6/6). We proposed a novel index that measured activation waves from the PV antra into the atrial body. This index was significantly higher in PVI responders than non-responders (clinical: 16.3 vs. 3.7%, p = 0.04; simulated: 21.1 vs. 14.1%, p = 0.02). Overall, this novel technique and proof of concept study demonstrated that preferential activation pathways exist during AF. Targeting patient-specific activation pathways that flowed from the PV antra to the left atrial body using PVI resulted in AF termination during the procedure. These PV activation flow pathways may correspond to the presence of drivers in the PV regions
Influence of leaf trichome type, and density on the host plant selection by the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)
Host selection by adult greenhouse whitefly Trialeurodes vaporariorum (Westwood) was assessed on two pelargonium plant cultivars, Pelargonium x domesticum (regal) and P. x hortorum (zonal) using Petri dish bioassay chambers in choice and no-choice tests. Plant characteristics which could influence the oviposition preference of the whitely i.e., type and density of trichomes on the abaxial leaf surface was determined. A strong host preference was observed for the regal compared to the zonal pelargonium by the adult whiteflies. In no-choice tests, adults laid a significantly higher number of eggs on regal than on zonal leaves both at 24 and 48 hours post-exposure, respectively. After exposure to the adult whitefly, the number of
42 eggs in choice tests were similar between cultivars at 24 hours, but were higher for regal at 48 and 72 hours. The total number of trichomes (sng: straight non-glandular + sg: straight glandular) per 0.50 cm2 44 was significantly less on regal (Mean ± SE sng + sg; 43.1 ± 1.5) than on zonal leaves (60.5 ± 1.2); however, the sng trichomes were significantly higher on the zonal (49.4 ± 0.96) than the regal leaves (28.6 ± 1.00). Also, the number of sg trichomes was slightly higher for the regal cultivar leaves compared to the zonal, being 14.4 ± 1.2 and 11.2 ± 0.5, respectively. Results suggest that the trichome density, type and the ability to express glandular exudates can affect adult whitefly Pelargonium cultivar preference and plays an important role in their host plant selection for oviposition
Observed NO/NO_2 Ratios in the Upper Troposphere Imply Errors in NO-NO_2-O_3 Cycling Kinetics or an Unaccounted NO_x Reservoir
Observations from the SEAC^4RS aircraft campaign over the southeast United States in August–September 2013 show NO/NO_2 concentration ratios in the upper troposphere that are approximately half of photochemical equilibrium values computed from Jet Propulsion Laboratory (JPL) kinetic data. One possible explanation is the presence of labile NO_x reservoir species, presumably organic, decomposing thermally to NO_2 in the instrument. The NO_2 instrument corrects for this artifact from known labile HNO_4 and CH_3O_2NO_2 NO_x reservoirs. To bridge the gap between measured and simulated NO_2, additional unaccounted labile NO_x reservoir species would have to be present at a mean concentration of ~40 ppt for the SEAC^4RS conditions (compared with 197 ppt for NOx). An alternative explanation is error in the low‐temperature rate constant for the NO + O_3 reaction (30% 1‐σ uncertainty in JPL at 240 K) and/or in the spectroscopic data for NO_2 photolysis (20% 1‐σ uncertainty). Resolving this discrepancy is important for understanding global budgets of tropospheric oxidants and for interpreting satellite observations of tropospheric NO_2 columns
- …