1,896 research outputs found
Cosmological constraints on neutrino self-interactions with a light mediator
If active neutrinos undergo non-standard (`secret') interactions (NSI)
the cosmological evolution of the neutrino fluid might be altered, leaving an
imprint in cosmological observables. We use the latest publicly available CMB
data from Planck to constrain NSI inducing scattering, under the
assumption that the mediator of the secret interaction is very light. We
find that the effective coupling constant of the interaction, , is constrained at (95\% credible interval), which stregthens to
when Planck non-baseline small-scale
polarization is considered. Our findings imply that after decoupling at
MeV, cosmic neutrinos are free streaming at redshifts , or
if small-scale polarization is included. These bounds are only
marginally improved when data from geometrical expansion probes are included in
the analysis to complement Planck. We also find that the tensions between CMB
and low-redshift measurements of the expansion rate and the amplitude of
matter fluctuations are not significantly reduced. Our results are
independent on the underlying particle physics model as long as is very
light. Considering a model with Majorana neutrinos and a pseudoscalar mediator
we find that the coupling constant of the secret interaction is constrained
at . By further assuming that the pseudoscalar
interaction comes from a dynamical realization of the see-saw mechanism, as in
Majoron models, we can bound the scale of lepton number breaking as
.Comment: V2. Replaced to match version accepted for publication in PRD. Added
more detailed discussion about parameter degeneracies. 14 pages, 6 figures, 3
table
The observed chemical structure of L1544
Prior to star formation, pre-stellar cores accumulate matter towards the
centre. As a consequence, their central density increases while the temperature
decreases. Understanding the evolution of the chemistry and physics in this
early phase is crucial to study the processes governing the formation of a
star. We aim at studying the chemical differentiation of a prototypical
pre-stellar core, L1544, by detailed molecular maps. In contrast with single
pointing observations, we performed a deep study on the dependencies of
chemistry on physical and external conditions. We present the emission maps of
39 different molecular transitions belonging to 22 different molecules in the
central 6.25 arcmin of L1544. We classified our sample in five families,
depending on the location of their emission peaks within the core. Furthermore,
to systematically study the correlations among different molecules, we have
performed the principal component analysis (PCA) on the integrated emission
maps. The PCA allows us to reduce the amount of variables in our dataset.
Finally, we compare the maps of the first three principal components with the
H column density map, and the T map of the core. The results of
our qualitative analysis is the classification of the molecules in our dataset
in the following groups: (i) the -CH family (carbon chain
molecules), (ii) the dust peak family (nitrogen-bearing species), (iii) the
methanol peak family (oxygen-bearing molecules), (iv) the HNCO peak family
(HNCO, propyne and its deuterated isotopologues). Only HCO and
CS do not belong to any of the above mentioned groups. The principal
component maps allow us to confirm the (anti-)correlations among different
families that were described in a first qualitative analysis, but also points
out the correlation that could not be inferred before.Comment: 29 pages, 19 figures, 2 appendices, accepted for publication in A&A,
arXiv abstract has been slightly modifie
Evidence for orbital motion of CW Leonis from ground-based astrometry
© 2017 The Authors.Recent Atacama Large Millimeter/submillimeter Array (ALMA) observations indicate that CW Leo, the closest carbon-rich asymptotic giant branch star to Sun, might have a low-mass stellar companion. We present archival ground-based astrometric measurements of CW Leo obtained within the context of the Torino Parallax Program and with > 6 yr (1995-2001) of time baseline. The residuals to a single-star solution show significant curvature, and they are strongly correlatedwith thewell-known I-band photometric variations due to stellar pulsations. We describe successfully the astrometry of CW Leo with a variability-induced motion (VIM) + acceleration model. We obtain proper motion and parallax of the centre-of-mass of the binary, the former in fair agreement with recent estimates, the latter at the near end of the range of inferred distances based on indirect methods. The VIM + acceleration model results allow us to derive a companion mass in agreement with that inferred by ALMA, they point towards a somewhat longer period than implied by ALMA, but are not compatible with much longer period estimates. These data will constitute a fundamental contribution towards the full understanding of the orbital architecture of the system when combined with Gaia astrometry, providing an ~25 yr time baseline.Peer reviewe
The Evens and Odds of CMB Anomalies
The lack of power of large--angle CMB anisotropies is known to increase its
statistical significance at higher Galactic latitudes, where a string--inspired
pre--inflationary scale can also be detected. Considering the Planck
2015 data, and relying largely on a Bayesian approach, we show that the effect
is mostly driven by the \emph{even}-- harmonic multipoles with , which appear sizably suppressed in a way that is robust with
respect to Galactic masking, along with the corresponding detections of
. On the other hand, the first \emph{odd}-- multipoles are only
suppressed at high Galactic latitudes. We investigate this behavior in
different sky masks, constraining through even and odd multipoles, and
we elaborate on possible implications. We include low-- polarization data
which, despite being noise--limited, help in attaining confidence levels of
about 3 in the detection of . We also show by direct forecasts
that a future all--sky --mode cosmic--variance--limited polarization survey
may push the constraining power for beyond 5 .Comment: 49 pages, 19 figures. Figures and final discussion simplified,
references added. Final version to appear in Physics of the Dark Univers
Algorithms for â„“p Low Rank Approximation
We consider the problem of approximating a given matrix by a low-rank matrix so as to minimize the entry-wise ℓp-approximation error, for any P ≥ 1; the case p = 2 is the classical SVD problem. We obtain the first provably good approximation algorithms for this version of low-rank approximation that work for every value of p ≥ 1, including p = σ. Our algorithms are simple, easy to implement, work well in practice, and illustrate interesting tradeoffs between the approximation quality, the running time, and the rank of the approximating matrix
A novel CMB polarization likelihood package for large angular scales built from combined WMAP and Planck LFI legacy maps
We present a CMB large-scale polarization dataset obtained by combining WMAP
Ka, Q and V with Planck 70 GHz maps. We employ the legacy frequency maps
released by the WMAP and Planck collaborations and perform our own Galactic
foreground mitigation technique, which relies on Planck 353 GHz for polarized
dust and on Planck 30 GHz and WMAP K for polarized synchrotron. We derive a
single, optimally-noise-weighted, low-residual-foreground map and the
accompanying noise covariance matrix. These are shown, through
analysis, to be robust over an ample collection of Galactic masks. We use this
dataset, along with the Planck legacy Commander temperature solution, to build
a pixel-based low-resolution CMB likelihood package, whose robustness we test
extensively with the aid of simulations, finding excellent consistency. Using
this likelihood package alone, we constrain the optical depth to reionazation
at C.L., on 54\% of the sky. Adding the
Planck high- temperature and polarization legacy likelihood, the Planck
lensing likelihood and BAO observations we find
in a full CDM exploration. The
latter bounds are slightly less constraining than those obtained employing
\Planck\ HFI CMB data for large angle polarization, that only include EE
correlations. Our bounds are based on a largely independent dataset that does
include also TE correlations. They are generally well compatible with Planck
HFI preferring slightly higher values of . We make the low-resolution
Planck and WMAP joint dataset publicly available along with the accompanying
likelihood code.Comment: The WMAP+LFI likelihood module is available on
\http://www.fe.infn.it/u/pagano/low_ell_datasets/wmap_lfi_legacy
The radial metallicity gradients in the Milky Way thick disk as fossil signatures of a primordial chemical distribution
In this letter we examine the evolution of the radial metallicity gradient
induced by secular processes, in the disk of an -body Milky Way-like galaxy.
We assign a [Fe/H] value to each particle of the simulation according to an
initial, cosmologically motivated, radial chemical distribution and let the
disk dynamically evolve for 6 Gyr. This direct approach allows us to take into
account only the effects of dynamical evolution and to gauge how and to what
extent they affect the initial chemical conditions. The initial [Fe/H]
distribution increases with R in the inner disk up to R ~ 10 kpc and decreases
for larger R. We find that the initial chemical profile does not undergo major
transformations after 6 Gyr of dynamical evolution. The final radial chemical
gradients predicted by the model in the solar neighborhood are positive and of
the same order of those recently observed in the Milky Way thick disk.
We conclude that: 1) the spatial chemical imprint at the time of disk
formation is not washed out by secular dynamical processes, and 2) the observed
radial gradient may be the dynamical relic of a thick disk originated from a
stellar population showing a positive chemical radial gradient in the inner
regions.Comment: 10 pages, 5 figures, Accepted for publication on Astrophysical
Journal Letter
- …