88 research outputs found

    Few smooth d-polytopes with n lattice points

    Get PDF
    We prove that, for fixed n there exist only finitely many embeddings of Q-factorial toric varieties X into P^n that are induced by a complete linear system. The proof is based on a combinatorial result that for fixed nonnegative integers d and n, there are only finitely many smooth d-polytopes with n lattice points. We also enumerate all smooth 3-polytopes with at most 12 lattice points. In fact, it is sufficient to bound the singularities and the number of lattice points on edges to prove finiteness.Comment: 20+2 pages; major revision: new author, new structure, new result

    Striking augmentation of hematopoietic cell chimerism in noncytoablated allogeneic bone marrow recipients by flt3 ligand and tacrolimus

    Get PDF
    The influence of granulocyte-macrophage colony-stimulating factor (GM- CSF) and the recently identified hematopoietic stem-progenitor cell mobilizing factor flt3 ligand (FL) on donor leukocyte microchimerism in noncytodepleted recipients of allogeneic bone marrow (BM) was compared. B10 mice (H2b) given 50 x 106 allogeneic (B10.BR [H2(k)]) BM cells also received either GM-CSF (4 μg/day s.c.), FL (10 μg/day i.p.), or no cytokine, with or without concomitant tacrolimus (formerly FK506; 2 mg/kg) from day 0. Chimerism was quantitated in the spleen 7 days after transplantation by both polymerase chain reaction (donor DNA [major histocompatibility complex class II; I-E(k)]) and immunohistochemical (donor [I-E(k+)] cell) analyses. Whereas GM-CSF alone significantly augmented (fivefold) the level of donor DNA in recipients' spleens, FL alone caused a significant (60%) reduction. Donor DNA was increased 10-fold by tacrolimus alone, whereas coadministration of GM-CSF and tacrolimus resulted in a greater than additive effect (28-fold increase). A much more striking effect was observed with FL + tacrolimus (>125-fold increase in donor DNA compared with BM alone). These findings were reflected in the relative numbers of donor major histocompatibility complex class II+ cells (many resembling dendritic cells) detected in spleens, although quantitative differences among the groups were less pronounced. Evaluation of cytotoxic T lymphocyte generation by BM recipients' spleen cells revealed that FL alone augmented antidonor immunity and that this was reversed by tacrolimus. Thus, although FL may potentiate antidonor reactivity in nonimmunosuppressed, allogeneic BM recipients, it exhibits potent chimerism-enhancing activity when coadministered with recipient immunosuppressive therapy. This property of FL may offer considerable potential for the augmentation of microchimerism, with therapeutic implications for organ allograft survival and tolerance induction

    In Vivo Imaging of Transiently Transgenized Mice with a Bovine Interleukin 8 (CXCL8) Promoter/Luciferase Reporter Construct

    Get PDF
    One of the most remarkable properties of interleukin 8 (CXCL8/IL-8), a chemokine with known additional functions also in angiogenesis and tissue remodeling, is the variation of its expression levels. In healthy tissues, IL-8 is barely detectable, but it is rapidly induced by several folds in response to proinflammatory cytokines, bacterial or viral products, and cellular stress. Although mouse cells do not bear a clear homologous IL-8 gene, the murine transcriptional apparatus may well be capable of activating or repressing a heterologous IL-8 gene promoter driving a reporter gene. In order to induce a transient transgenic expression, mice were systemically injected with a bovine IL-8 promoter–luciferase construct. Subsequently mice were monitored for luciferase expression in the lung by in vivo bioluminescent image analysis over an extended period of time (up to 60 days). We demonstrate that the bovine IL-8 promoter–luciferase construct is transiently and robustly activated 3–5 hours after LPS and TNF-α instillation into the lung, peaking at 35 days after construct delivery. Bovine IL-8 promoter–luciferase activation correlates with white blood cell and neutrophil infiltration into the lung. This study demonstrates that a small experimental rodent model can be utilized for non-invasively monitoring, through a reporter gene system, the activation of an IL-8 promoter region derived from a larger size animal (bovine). This proof of principle study has the potential to be utilized also for studying primate IL-8 promoter regions

    Proteomes and Signalling Pathways of Antler Stem Cells

    Get PDF
    As the only known example of complete organ regeneration in mammals, deer antler in the growing or velvet phase is of major interest in developmental biology. This regeneration event initiates from self-renewing antler stem cells that exhibit pluripotency. At present, it remains unclear how the activation and quiescence of antler stem cells are regulated. Therefore, in the present study proteins that were differentially expressed between the antler stem cells and somatic cells (facial periosteum) were identified by a gel-based proteomic technique, and analysed using Ingenuity Pathway Analysis software. Several molecular pathways (PI3K/Akt, ERK/MAPK, p38 MAPK, etc.) were found to be activated during proliferation. Also expressed were the transcription factors POU5F1, SOX2, NANOG and MYC, which are key markers of embryonic stem cells. Expression of these proteins was confirmed in both cultured cells and fresh tissues by Western blot analysis. Therefore, the molecular pathways and transcription factors identified in the current study are common to embryonic and adult stem cells. However, expression of embryonic stem cell transcription factors would suggest that antler stem cells are, potentially, an intermediary stem cell type between embryonic and the more specialized tissue-specific stem cells like those residing in muscle, fat or from a hematopoietic origin. The retention of this embryonic, pluripotent lineage may be of fundamental importance for the subsequent regenerative capacity of antlers

    Preserving and Using Germplasm and Dissociated Embryonic Cells for Conserving Caribbean and Pacific Coral

    Get PDF
    Coral reefs are experiencing unprecedented degradation due to human activities, and protecting specific reef habitats may not stop this decline, because the most serious threats are global (i.e., climate change), not local. However, ex situ preservation practices can provide safeguards for coral reef conservation. Specifically, modern advances in cryobiology and genome banking could secure existing species and genetic diversity until genotypes can be introduced into rehabilitated habitats. We assessed the feasibility of recovering viable sperm and embryonic cells post-thaw from two coral species, Acropora palmata and Fungia scutaria that have diffferent evolutionary histories, ecological niches and reproductive strategies. In vitro fertilization (IVF) of conspecific eggs using fresh (control) spermatozoa revealed high levels of fertilization (>90% in A. palmata; >84% in F. scutaria; P>0.05) that were unaffected by tested sperm concentrations. A solution of 10% dimethyl sulfoxide (DMSO) at cooling rates of 20 to 30°C/min most successfully cryopreserved both A. palmata and F. scutaria spermatozoa and allowed producing developing larvae in vitro. IVF success under these conditions was 65% in A. palmata and 53% in F. scutaria on particular nights; however, on subsequent nights, the same process resulted in little or no IVF success. Thus, the window for optimal freezing of high quality spermatozoa was short (∼5 h for one night each spawning cycle). Additionally, cryopreserved F. scutaria embryonic cells had∼50% post-thaw viability as measured by intact membranes. Thus, despite some differences between species, coral spermatozoa and embryonic cells are viable after low temperature (−196°C) storage, preservation and thawing. Based on these results, we have begun systematically banking coral spermatozoa and embryonic cells on a large-scale as a support approach for preserving existing bio- and genetic diversity found in reef systems
    corecore