57 research outputs found

    Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species

    Get PDF
    BACKGROUND: Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. METHODS: We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz). After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyl)theophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean +/- standard deviation) between the groups by a variance analysis and post hoc test. RESULTS: Desflurane 6% (84 +/- 6% of baseline) enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 +/- 8% of baseline, P < 0.0001). N-mercaptopropionylglycine (54 +/- 3% of baseline), 8-(p-Sulfophenyl)theophylline (62 +/- 9% of baseline), HOE140 (58 +/- 6% of baseline) abolished desflurane-induced postconditioning. Adenosine (80 +/- 9% of baseline) and bradykinin (83 +/- 4% of baseline) induced postconditioning (P < 0.0001 vs control), N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 +/- 8 and 58 +/- 5% of baseline, respectively). CONCLUSIONS: In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin administered at the beginning of reoxygenation, was mediated, at least in part, through ROS production

    Comparative Transcriptome Analysis of Bacillus subtilis Responding to Dissolved Oxygen in Adenosine Fermentation

    Get PDF
    Dissolved oxygen (DO) is an important factor for adenosine fermentation. Our previous experiments have shown that low oxygen supply in the growth period was optimal for high adenosine yield. Herein, to better understand the link between oxygen supply and adenosine productivity in B. subtilis (ATCC21616), we sought to systematically explore the effect of DO on genetic regulation and metabolism through transcriptome analysis. The microarrays representing 4,106 genes were used to study temporal transcript profiles of B. subtilis fermentation in response to high oxygen supply (agitation 700 r/min) and low oxygen supply (agitation 450 r/min). The transcriptome data analysis revealed that low oxygen supply has three major effects on metabolism: enhance carbon metabolism (glucose metabolism, pyruvate metabolism and carbon overflow), inhibit degradation of nitrogen sources (glutamate family amino acids and xanthine) and purine synthesis. Inhibition of xanthine degradation was the reason that low oxygen supply enhanced adenosine production. These provide us with potential targets, which can be modified to achieve higher adenosine yield. Expression of genes involved in energy, cell type differentiation, protein synthesis was also influenced by oxygen supply. These results provided new insights into the relationship between oxygen supply and metabolism

    Functional selectivity of adenosine receptor ligands

    Get PDF
    Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as β-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the β-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins
    • …
    corecore