11,572 research outputs found

    A voice-actuated wind tunnel model leak checking system

    Get PDF
    A voice-actuated wind tunnel model leak checking system was developed. The system uses a voice recognition and response unit to interact with the technician along with a graphics terminal to provide the technician with visual feedback while checking a model for leaks

    Space shuttle search and rescue experiment using synthetic aperture radar

    Get PDF
    The feasibility of a synthetic aperture radar for search and rescue applications was demonstrated with aircraft experiments. One experiment was conducted using the ERIM four-channel radar and several test sites in the Michigan area. In this test simple corner-reflector targets were successfully imaged. Results from this investigation were positive and indicate that the concept can be used to investigate new approaches focused on the development of a global search and rescue system. An orbital experiment to demonstrate the application of synthetic aperture radar to search and rescue is proposed using the space shuttle

    Thermomagnetic analysis of meteorites. 3: C3 and C4 chondrites

    Get PDF
    Thermomagnetic analysis on all of the C3 and C4 chondrites, conducted under conditions of controlled oxygen fugacity, indicates the presence of a thermally unstable component in at least 5 of the C3 chondrites which upon heating results in magnetite production. This unstable component is most likely troilite (FeS). The presence of the unstable substance may affect the estimation of paleointensities in meteorites which contain it. Our results indicate that Grosnaja, Ornans, Kainsaz, Felix, and Warrenton are likely to be less complicated for paleointensity determinations than the other C3 chondrites. Both C4 chondrites should lead to reliable results

    Thermomagnetic analysis of meterorites. 4: Ureilites

    Get PDF
    Samples of all available ureilites have been analyzed thermomagnetically. For three of the six (Dyalpur, Goalpara and Havero) evidence was found for only low-nickel metallic-iron as the magnetic component and the (saturation magnetization vs, temperature) curves were reversible. In the Novo Urei ureilite, magnetite in addition to low-nickel metallic-iron was indicated and again the Js-T curve was reversible. For the two badly weathered ureilites, Dingo Pup Donga and North Haig, indication was also found that both initial magnetite and low-nickel metallic-iron were present. However, the Js-T curves were somewhat irreversible and the final saturation magnetization was 20% and 50% greater than initially for North Haig and Dingo Pup Donga, respectively. This behavior is interpreted to be the result of magnetite production from a secondary iron oxide during the experiment

    Thermomagnetic analysis of meteorites, 2: C2 chondrites

    Get PDF
    Samples of all eighteen of the known C2 chondrites were analyzed thermomagnetically. For eleven of these, initial Fe3O4 content is low(generally 1%) and the J sub s-T curves are irreversible. The heating curves show variable and erratic behavior, whereas the cooling curves appear to be that of Fe3O4. The saturation moment after cooling is greater (up to 10 times larger) than it is initially. This behavior is interpreted to be the result of the production of magnetite from a thermally unstable phase--apparently FeS. Four of the remaining 7 C2 chondrites contain Fe3O4 as the only significant magnetic phase: initial magnetite contents range from 4 to 13 percent. The remaining three C2 chondrites contain iron or nickel-iron in addition to Fe3O4. These seven C2 chondrites show little evidence of the breakdown of a thermally unstable phase

    Zitterbewegung of nearly-free and tightly bound electrons in solids

    Full text link
    We show theoretically that nonrelativistic nearly-free electrons in solids should experience a trembling motion (Zitterbewegung, ZB) in absence of external fields, similarly to relativistic electrons in vacuum. The Zitterbewegung is directly related to the influence of periodic potential on the free electron motion. The frequency of ZB is ωEg/\omega\approx E_g/\hbar, where EgE_g is the energy gap. The amplitude of ZB is determined by the strength of periodic potential and the lattice period and it can be of the order of nanometers. We show that the amplitude of ZB does not depend much on the width of the wave packet representing an electron in real space. An analogue of the Foldy-Wouthuysen transformation, known from relativistic quantum mechanics, is introduced in order to decouple electron states in various bands. We demonstrate that, after the bands are decoupled, electrons should be treated as particles of a finite size. In contrast to nearly-free electrons we consider a two-band model of tightly bound electrons. We show that also in this case the electrons should experience the trembling motion. It is concluded that the phenomenon of Zitterbewegung of electrons in crystalline solids is a rule rather than an exception.Comment: 22 pages, 6 figures Published version, minor changes mad

    Suprathermal electron isotropy in high-beta solar wind and its role in heat flux dropouts

    Get PDF
    [1] Time variations in plasma beta and a parameter which measures isotropy in suprathermal electron pitch angle distributions show a remarkably close correspondence throughout the solar wind. The finding implies that high-beta plasma, with its multiple magnetic holes and sharp field and plasma gradients, is conducive to electron pitch-angle scattering, which reduces heat flux from the Sun without field-line disconnection. Thus the finding impacts our understanding of signatures we use to determine magnetic topology in the heliosphere

    Dark cloud cores and gravitational decoupling from turbulent flows

    Full text link
    We test the hypothesis that the starless cores may be gravitationally bound clouds supported largely by thermal pressure by comparing observed molecular line spectra to theoretical spectra produced by a simulation that includes hydrodynamics, radiative cooling, variable molecular abundance, and radiative transfer in a simple one-dimensional model. The results suggest that the starless cores can be divided into two categories: stable starless cores that are in approximate equilibrium and will not evolve to form protostars, and unstable pre-stellar cores that are proceeding toward gravitational collapse and the formation of protostars. The starless cores might be formed from the interstellar medium as objects at the lower end of the inertial cascade of interstellar turbulence. Additionally, we identify a thermal instability in the starless cores. Under par ticular conditions of density and mass, a core may be unstable to expansion if the density is just above the critical density for the collisional coupling of the gas and dust so that as the core expands the gas-dust coupling that cools the gas is reduced and the gas warms, further driving the expansion.Comment: Submitted to Ap

    U.S. grain marketing system for the 1990's: alternative policy scenarios

    Get PDF

    Selected characteristics of the United States grain marketing industry

    Get PDF
    corecore