2 research outputs found

    Classical integrability in the BTZ black hole

    Full text link
    Using the fact the BTZ black hole is a quotient of AdS_3 we show that classical string propagation in the BTZ background is integrable. We construct the flat connection and its monodromy matrix which generates the non-local charges. From examining the general behaviour of the eigen values of the monodromy matrix we determine the set of integral equations which constrain them. These equations imply that each classical solution is characterized by a density function in the complex plane. For classical solutions which correspond to geodesics and winding strings we solve for the eigen values of the monodromy matrix explicitly and show that geodesics correspond to zero density in the complex plane. We solve the integral equations for BMN and magnon like solutions and obtain their dispersion relation. Finally we show that the set of integral equations which constrain the eigen values of the monodromy matrix can be identified with the continuum limit of the Bethe equations of a twisted SL(2, R) spin chain at one loop.Comment: 45 pages, Reference added, typos corrected, discussion on geodesics improved to include all geodesic

    Field theory aspects of non-Abelian T-duality and N = 2 linear quivers

    Get PDF
    In this paper we propose a linear quiver with gauge groups of increasing rank as field theory dual to the AdS 5 background constructed by Sfetsos and Thompson through non-Abelian T-duality. The formalism to study 4d N = 2 SUSY CFTs developed by Gaiotto and Maldacena is essential for our proposal. We point out an interesting relation between (Hopf) Abelian and non-Abelian T-dual backgrounds that allows to see both backgrounds as different limits of a solution constructed by Maldacena and Núñez. This suggests different completions of the long quiver describing the CFT dual to the nonAbelian T-dual background that match different observables
    corecore