963 research outputs found

    Investigation of the association of weight loss with radiographic hip osteoarthritis in older community-dwelling female adults

    Get PDF
    Objective: Most guidelines recommending weight loss for hip osteoarthritis are based on research on knee osteoarthritis. Prior studies found no association between weight loss and hip osteoarthritis, but no previous studies have targeted older adults. Therefore, we aimed to determine whether there is any clear benefit of weight loss for radiographic hip osteoarthritis in older adults because weight loss is associated with health risks in older adults. Methods: We used data from white female participants aged ≥65 years from the Study of Osteoporotic Fractures. Our exposure of interest was weight change from baseline to follow-up at 8 years. Our outcomes were the development of radiographic hip osteoarthritis (RHOA) and the progression of RHOA over 8 years. Generalized estimating equations (clustering of 2 hips per participant) were used to investigate the association between exposure and outcomes adjusted for major covariates. Results: There was a total of 11,018 hips from 5509 participants. There was no associated benefit of weight loss for either of our outcomes. The odds ratios (95% confidence intervals) for the development and progression of RHOA were 0.99 (0.92–1.07) and 0.97 (0.86–1.09) for each 5% weight loss, respectively. The results were consistent in sensitivity analyses where participants were limited to those who reported trying to lose weight and who also had a body mass index in the overweight or obese range. Conclusion: Our findings suggest no associated benefit of weight loss in older female adults in the structure of the hip joint as assessed by radiography

    Subregional statistical shape modelling identifies lesser trochanter size as a possible risk factor for radiographic hip osteoarthritis, a cross-sectional analysis from the Osteoporotic Fractures in Men Study

    Get PDF
    BGF was a National Institute of Health Research academic clinical fellow whilst undertaking part of this research and is now a Medical Research Council clinical research fellow supported by grant MR/S021280/1. FRS was supported by a Medical Research Council UK grant MR/L010399/1 at the time of this study. This study used the SSM cohort funded by Versus Arthritis UK project grant ref 20244. The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: R01 AR052000, K24 AR048841, U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. Partial support for this work was provided by the Southwest Research Institute internal research project R9541 and NIAMS research grant AR052013. All authors have made significant contributions to the conception and design of this study, the acquisition of data, its analysis and interpretation. All authors helped draft the article before approving the final version of this manuscript. Dr B Faber ([email protected]) takes responsibility for the integrity of the work in its entirety.Peer reviewedPublisher PD

    Ruminal acidosis and the rapid onset of ruminal parakeratosis in a mature dairy cow: a case report

    Get PDF
    A mature dairy cow was transitioned from a high forage (100% forage) to a high-grain (79% grain) diet over seven days. Continuous ruminal pH recordings were utilized to diagnose the severity of ruminal acidosis. Additionally, blood and rumen papillae biopsies were collected to describe the structural and functional adaptations of the rumen epithelium. On the final day of the grain challenge, the daily mean ruminal pH was 5.41 ± 0.09 with a minimum of 4.89 and a maximum of 6.31. Ruminal pH was under 5.0 for 130 minutes (2.17 hours) which is characterized as the acute form of ruminal acidosis in cattle. The grain challenge increased blood beta-hydroxybutyrate by 1.8 times and rumen papillae mRNA expression of 3-hydroxy-3-methylglutaryl-coenzyme A synthase by 1.6 times. Ultrastructural and histological adaptations of the rumen epithelium were imaged by scanning electron and light microscopy. Rumen papillae from the high grain diet displayed extensive sloughing of the stratum corneum and compromised cell adhesion as large gaps were apparent between cells throughout the strata. This case report represents a rare documentation of how the rumen epithelium alters its function and structure during the initial stage of acute acidosis

    Meniscal T1rho and T2 measured with 3.0T MRI increases directly after running a marathon

    Get PDF
    PURPOSE: To prospectively evaluate changes in T1rho and T2 relaxation time in the meniscus using 3.0 T MRI in asymptomatic knees of marathon runners and to compare these findings with those of age-matched healthy subjects. MATERIAL AND METHODS: Thirteen marathon runners underwent 3.0 T MRI including T1rho and T2 mapping sequences before, 48-72 h after, and 3 months after competition. Ten controls were examined at baseline and after 3 months. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous. and other knee abnormalities with WORMS scores. Meniscal segmentation was performed to generate T1rho and T2 maps in six compartments. RESULTS: No differences in morphological knee abnormalities were found before and after the marathon. However, all marathon runners showed a significant increase in T1rho and T2 values after competition in all meniscus compartments (p < 0.0001), which may indicate changes in the biochemical composition of meniscal tissue. While T2 values decreased after 3 months T1rho values remained at a high level, indicating persisting changes in the meniscal matrix composition after a marathon. CONCLUSION: T2 values in menisci have the potential to be used as biomarkers for identifying reversible meniscus matrix changes indicating potential tissue damage. T1rho values need further study, but may be a valuable marker for diagnosing early, degenerative changes in the menisci following exercise

    Erythroid Promoter Confines FGF2 Expression to the Marrow after Hematopoietic Stem Cell Gene Therapy and Leads to Enhanced Endosteal Bone Formation

    Get PDF
    Fibroblast growth factor-2 (FGF2) has been demonstrated to be a promising osteogenic factor for treating osteoporosis. Our earlier study shows that transplantation of mouse Sca-1+ hematopoietic stem/progenitor cells that are engineered to express a modified FGF2 leads to considerable endosteal/trabecular bone formation, but it also induces adverse effects like hypocalemia and osteomalacia. Here we report that the use of an erythroid specific promoter, β-globin, leads to a 5-fold decrease in the ratio of serum FGF2 to the FGF2 expression in the marrow cavity when compared to the use of a ubiquitous promoter spleen focus-forming virus (SFFV). The confined FGF2 expression promotes considerable trabeculae bone formation in endosteum and does not yield anemia and osteomalacia. The avoidance of anemia in the mice that received Sca1+ cells transduced with FGF2 driven by the β-globin promoter is likely due to attenuation of high-level serum FGF2-mediated stem cell mobilization observed in the SFFV-FGF2 animals. The prevention of osteomalacia is associated with substantially reduced serum Fgf23/hypophosphatemia, and less pronounced secondary hyperparathyroidism. Our improved stem cell gene therapy strategy represents one step closer to FGF2-based clinical therapy for systemic skeletal augmentation
    corecore